ترغب بنشر مسار تعليمي؟ اضغط هنا

Microemulsification: An Approach for Analytical Determinations

101   0   0.0 ( 0 )
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion, which was the analytical signal of the method. The performed studies were: phase behavior, droplet dimension by dynamic light scattering, analytical curve, and robustness tests. The reliability of the method was evaluated by determining water in ethanol fuels and monoethylene glycol in complex samples of liquefied natural gas. The dispersions were composed of water-chlorobenzene (water analysis) and water-oleic acid (monoethylene glycol analysis) with ethanol as the hydrotrope phase. The experiments to determine water demonstrated that the analytical performance depends on the composition of ME. The linear range was fairly broad with limits of linearity up to 70.00% water in ethanol. For monoethylene glycol in water the linear range was observed throughout the volume fraction of analyte. The natural gas samples provided by the Petrobras exhibited color, particulate material, high ionic strength, and diverse compounds as metals, carboxylic acids, and anions. The method allowed accurate measures bypassing steps such as extraction, preconcentration, and dilution of the sample. In addition, the levels of robustness were promising. This parameter was evaluated by investigating the effect of (i) deviations in volumetric preparation of the dispersions and (ii) changes in temperature over the analyte contents recorded by the method.



قيم البحث

اقرأ أيضاً

Atom probe tomography (APT) analysis conditions play a major role in the composition measurement accuracy. Preferential evaporation, which significantly biases apparent composition, more than other well-known phenomena in APT, is strongly connected t o those analysis conditions. One way to optimize them, in order to have the most accurate measurement, is therefore to be able to predict and then to estimate their influence on the apparent composition. An analytical model is proposed to quantify the preferential evaporation. This model is applied to three different alloys: NiCu, FeCrNi and FeCu. The model explains not only the analysis temperature dependence, as in already existing model, but also the dependence to the pulse fraction and the pulse frequency. Moreover, the model can also provide energetic constant directly linked to energy barrier, required to field evaporate atom from the sample surface. 2
115 - C. L. Henley , V. Elser , 2000
How, in principle, could one solve the atomic structure of a quasicrystal, modeled as a random tiling decorated by atoms, and what techniques are available to do it? One path is to solve the phase problem first, obtaining the density in a higher dime nsional space which yields the_averaged_ scattering density in 3-dimensional space by the usual construction of an incommensurate cut. A novel direct method for this is summarized and applied to an i(AlPdMn) data set. This averaged density falls short of a true structure determination (which would reveal the typical_unaveraged_ atomic patterns.) We discuss the problematic validity of inferring an ideal structure by simply factoring out a ``perp-space Debye-Waller factor, and we test this using simulations of rhombohedral tilings. A second, ``unified path is to relate the measured and modeled intensities directly, by adjusting parameters in a simulation to optimize the fit. This approach is well suited for unifying structural information from diffraction and from minimizing total energies derived ultimately from ab-initio calculations. Finally, we discuss the special pitfalls of fitting random-tiling decagonal phases.
We extend the recently developed converse NMR approach [T. Thonhauser, D. Ceresoli, A. Mostofi, N. Marzari, R. Resta, and D. Vanderbilt, J. Chem. Phys. textbf{131}, 101101 (2009)] such that it can be used in conjunction with norm-conserving, non-loca l pseudopotentials. This extension permits the efficient ab-initio calculation of NMR chemical shifts for elements other than hydrogen within the convenience of a plane-wave pseudopotential approach. We have tested our approach on several finite and periodic systems, finding very good agreement with established methods and experimental results.
X-ray absorption fine structure (XAFS) and x-ray emission spectroscopy (XES) are advanced x-ray spectroscopies that impact a wide range of disciplines. However, unlike the majority of other spectroscopic methods, XAFS and XES are accompanied by an un usual access model, wherein; the dominant use of the technique is for premier research studies at world-class facilities, i.e., synchrotron x-ray light sources. In this paper we report the design and performance of an improved spectrometer XAFS and XES based on the general conceptual design of Seidler, et al., Rev. Sci. Instrum. 2014. New developments include reduced mechanical degrees of freedom, much-increased flux, and a wider Bragg angle range to enable extended x-ray absorption fine structure (EXAFS) for the first time with this type of modern laboratory XAFS configuration. This instrument enables a new class of routine applications that are incompatible with the mission and access model of the synchrotron light sources. To illustrate this, we provide numerous examples of x-ray absorption near edge structure (XANES), EXAFS, and XES results for a variety of problems and energy ranges. Highlights include XAFS and XES measurements of battery electrode materials, EXAFS of Ni and V with full modeling of results to validate monochromator performance, valence-to-core XES for 3d transition metal compounds, and uranium XANES and XES for different oxidation states. Taken en masse, these results further support the growing perspective that modern laboratory-based XAFS and XES have the potential to develop a new branch of analytical chemistry.
173 - J. Koppen , P. Jachym , R. Taylor 2018
The removal of gas by ram pressure stripping of galaxies is treated by a purely kinematic description. The solution has two asymptotic limits: if the duration of the ram pressure pulse exceeds the period of vertical oscillations perpendicular to the galactic plane, the commonly used quasi-static criterion of Gunn & Gott is obtained which uses the maximum ram pressure that the galaxy has experienced along its orbit. For shorter pulses the outcome depends on the time-integrated ram pressure. This parameter pair fully describes the gas mass fraction that is stripped from a given galaxy. This approach closely reproduces results from SPH simulations. We show that typical galaxies follow a very tight relation in this parameter space corresponding to a pressure pulse length of about 300 Myr. Thus, the Gunn & Gott criterion provides a good description for galaxies in larger clusters. Applying the analytic description to a sample of 232 Virgo galaxies from the GoldMine database, we show that the ICM provides indeed the ram pressures needed to explain the deficiencies. We also can distinguish current and past strippers, including objects whose stripping state was unknown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا