ﻻ يوجد ملخص باللغة العربية
In a frustrated J_1-J_2 chain with the nearest-neighbor ferromagnetic interaction J_1 and the next-nearest-neighbor antiferromagnetic interaction J_2, novel magnetic states such as a spin-nematic state are theoretically expected. However, they have been rarely examined in experiments because of the difficulty in obtaining suitable model compounds. We show here that the quasi-one-dimensional antiferromagnet NaCuMoO_4(OH), which comprises edge-sharing CuO_2 chains, is a good candidate J_1-J_2 chain antiferromagnet. The exchange interactions are estimated as J_1 = - 51 K and J_2 = 36 K by comparing the magnetic susceptibility, heat capacity, and magnetization data with the data obtained using calculations by the exact diagonalization method. High-field magnetization measurements at 1.3 K show a saturation above 26 T with little evidence of a spin nematic state expected just below the saturation field, which is probably due to smearing effects caused by thermal fluctuations and the polycrystalline nature of the sample.
We investigate the magnetic properties of LiYbO$_2$, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb$^{3+}$ ions in LiYbO$_2$
The excitation spectrum of the frustrated spin-$1/2$ Heisenberg chain is reexamined using variational and exact diagonalization calculations. We show that the overlap matrix of the short-range resonating valence bond states basis can be inverted whic
We investigate the ground state nature of the transverse field Ising model on the $J_1-J_2$ square lattice at the highly frustrated point $J_2/J_1=0.5$. At zero field, the model has an exponentially large degenerate classical ground state, which can
An integrable Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and Dzyaloshinski-Moriya interacton is constructed. The integrability of the model is proven. Based on the Bethe Ansatz solutions, the ground state
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and sec