ﻻ يوجد ملخص باللغة العربية
Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10^5 K cm^-3) molecular clouds in the solar neighbourhood. However, it is unknown if these theories extend to clouds in high-pressure (P/k > 10^7 K cm^-3) environments, like those in the Galaxys inner 200 pc Central Molecular Zone (CMZ) and in the early Universe. Here we present ALMA 3mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density PDF is strikingly similar to those of solar neighbourhood clouds, there is one important quantitative difference: its mean column density is 1--2 orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighbourhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighbourhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighbourhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early Universe.
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili
The stellar initial mass function (IMF) is a fundamental property of star formation, offering key insight into the physics driving the process as well as informing our understanding of stellar populations, their by-products, and their impact on the s
We present a new high-resolution study of pre-protocluster regions in tracers exclusively probing the coldest and dense gas (NH_2D). The data are used to constrain the chemical, thermal, kinematic, and physical conditions (i.e., densities) in G29.96e
G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high mass, Arches-like cluster. Here we present new ALMA observations of its small-scale (~0.07 pc) 3mm dust continuum and molecular line emission. The data reveal a compl
Cold dark clouds are nearby members of the densest and coldest phase in the galactic interstellar medium, and represent the most accessible sites where stars like our Sun are currently being born. In this review we discuss recent progress in their st