ﻻ يوجد ملخص باللغة العربية
Cold dark clouds are nearby members of the densest and coldest phase in the galactic interstellar medium, and represent the most accessible sites where stars like our Sun are currently being born. In this review we discuss recent progress in their study, including the newly discovered infrared dark clouds that are likely precursors to stellar clusters. At large scales, dark clouds present filamentary mass distributions with motions dominated by supersonic turbulence. At small, sub-parsec scales, a population of subsonic starless cores provides a unique glimpse of the conditions prior to stellar birth. Recent studies of starless cores reveal a combination of simple physical properties together with a complex chemical structure dominated by the freeze-out of molecules onto cold dust grains. Elucidating this combined structure is both an observational and theoretical challenge whose solution will bring us closer to understanding how molecular gas condenses to form stars.
To date, most numerical simulations of molecular clouds, and star formation within them, assume a uniform density sphere or box with an imposed turbulent velocity field. In this work, we select molecular clouds from galactic scale simulations as init
Giant molecular clouds (GMCs) are the primary reservoirs of cold, star-forming molecular gas in the Milky Way and similar galaxies, and thus any understanding of star formation must encompass a model for GMC formation, evolution, and destruction. The
(Abridged). In this paper, we present results from a large set of numerical simulations that demonstrate that H2 formation occurs rapidly in turbulent gas. Starting with purely atomic hydrogen, large quantities of molecular hydrogen can be produced o
(Abridged) We use 8 micron Spitzer GLIMPSE images to make extinction maps of 10 IRDCs, selected to be relatively nearby and massive. The extinction mapping technique requires modeling the IR background intensity behind the cloud, which is achieved by
Primordial star formation appears to result in stars at least an order of magnitude more massive than modern star formation. It has been proposed that the transition from primordial to modern initial mass functions occurs due to the onset of effectiv