ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dynamical Evolution of Stellar Black Holes in Globular Clusters

165   0   0.0 ( 0 )
 نشر من قبل Meagan Morscher
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from $sim 20 - 100, M_odot$. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. We describe numerical results for 42 models, covering a range of realistic initial conditions, including up to $1.6times10^6$ stars. In almost all models we find that significant numbers of black holes (up to $sim10^3$) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer mass segregation instability) is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.



قيم البحث

اقرأ أيضاً

Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses ~10 MSun, BHs are ~20 times more m assive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well-mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH--BH merger rate from globular clusters could be comparable to the rate in the field.
200 - Mark Gieles 2015
Scaling relations for globular clusters (GC) differ from scaling relations for pressure supported (elliptical) galaxies. We show that two-body relaxation is the dominant mechanism in shaping the bivariate dependence of density on mass and Galactocent ric distance for Milky Way GCs with masses <10^6 Msun, and it is possible, but not required, that GCs formed with similar scaling relations as ultra-compact dwarf galaxies. We use a fast cluster evolution model to fit a parameterised model for the initial properties of Milky Way GCs to the observed present-day properties. The best-fit cluster initial mass function is substantially flatter (power-law index alpha =- 0.6+/-0.2) than what is observed for young massive clusters (YMCs) forming in the nearby Universe (alpha =~-2). A slightly steeper CIMF is allowed when considering the metal-rich GCs separately (alpha =~-1.2+/-0.4$). If stellar mass loss and two-body relaxation in the Milky Way tidal field are the dominant disruption mechanisms, then GCs formed differently from YMCs.
Intermediate-mass black holes (IMBHs) have masses of about 100 to 100,000 solar masses. They remain elusive. Observing IMBHs in present-day globular clusters (GCs) would validate a formation channel for seed black holes in the early universe and info rm event predictions for gravitational wave facilities. Reaching a large number of GCs per galaxy is key, as models predict that only a few percent will have retained their gravitational-wave fostering IMBHs. Related, many galaxies will need to be examined to establish a robust sample of IMBHs in GCs. These needs can be meet by using a next-generation Very Large Array (ngVLA) to search for IMBHs in the GCs of hundreds of galaxies out to a distance of 25 Mpc. These galaxies hold tens of thousands of GCs in total. We describe how to convert an ngVLA signal from a GC to an IMBH mass according to a semi-empirical accretion model. Simulations of gas flows in GCs would help to improve the robustness of the conversion. Also, self-consistent dynamical models of GCs, with stellar and binary evolution in the presence of IMBHs, would help to improve IMBH retention predictions for present-day GCs.
Open and globular star clusters have served as benchmarks for the study of stellar evolution due to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that establis hed the importance of imaging stars in these systems, we focus on several recent studies that have challenged our fundamental picture of star clusters. These new studies indicate that star clusters can very well harbour multiple stellar populations, possibly formed through self-enrichment processes from the first-generation stars that evolved through post-main-sequence evolutionary phases. Correctly interpreting stellar evolution in such systems is tied to our understanding of both chemical-enrichment mechanisms, including stellar mass loss along the giant branches, and the dynamical state of the cluster. We illustrate recent imaging, spectroscopic and theoretical studies that have begun to shed new light on the evolutionary processes that occur within star clusters.
77 - Mark Gieles 2021
Palomar 5 is one of the sparsest star clusters in the Galactic halo and is best-known for its spectacular tidal tails, spanning over 20 degrees across the sky. With N-body simulations we show that both distinguishing features can result from a stella r-mass black hole population, comprising ~20% of the present-day cluster mass. In this scenario, Palomar 5 formed with a `normal black hole mass fraction of a few per cent, but stars were lost at a higher rate than black holes, such that the black hole fraction gradually increased. This inflated the cluster, enhancing tidal stripping and tail formation. A gigayear from now, the cluster will dissolve as a 100% black hole cluster. Initially denser clusters end up with lower black hole fractions, smaller sizes, and no observable tails. Black hole-dominated, extended star clusters are therefore the likely progenitors of the recently discovered thin stellar streams in the Galactic halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا