ترغب بنشر مسار تعليمي؟ اضغط هنا

Retention of Stellar-Mass Black Holes in Globular Clusters

144   0   0.0 ( 0 )
 نشر من قبل Meagan Morscher
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses ~10 MSun, BHs are ~20 times more massive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well-mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH--BH merger rate from globular clusters could be comparable to the rate in the field.



قيم البحث

اقرأ أيضاً

For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to de tect the crucial rise in the velocity-dispersion profile which indicates the presence of a central black hole. In addition, N-body simulations compared to our data will give us a deeper insight in the properties of clusters with black holes and stronger selection criteria for further studies. For the first time, we obtain a homogeneous sample of globular cluster integral- field spectroscopy which allows a direct comparison between clusters with and without an intermediate-mass black hole.
Decades after the first predictions of intermediate-mass black holes (IMBHs) in globular clusters (GCs) there is still no unambiguous observational evidence for their existence. The most promising signatures for IMBHs are found in the cores of GCs, w here the evidence now comes from the stellar velocity distribution, the surface density profile, and, for very deep observations, the mass-segregation profile near the cluster center. However, interpretation of the data, and, in particular, constraints on central IMBH masses, require the use of detailed cluster dynamical models. Here we present results from Monte Carlo cluster simulations of GCs that harbor IMBHs. As an example of application, we compare velocity dispersion, surface brightness and mass-segregation profiles with observations of the GC M10, and constrain the mass of a possible central IMBH in this cluster. We find that, although M10 does not seem to possess a cuspy surface density profile, the presence of an IMBH with a mass up to 0.75% of the total cluster mass, corresponding to about 600 Msun, cannot be excluded. This is also in agreement with the surface brightness profile, although we find it to be less constraining, as it is dominated by the light of giants, causing it to fluctuate significantly. We also find that the mass-segregation profile cannot be used to discriminate between models with and without IMBH. The reason is that M10 is not yet dynamically evolved enough for the quenching of mass segregation to take effect. Finally, detecting a velocity dispersion cusp in clusters with central densities as low as in M10 is extremely challenging, and has to rely on only 20-40 bright stars. It is only when stars with masses down to 0.3 Msun are included that the velocity cusp is sampled close enough to the IMBH for a significant increase above the core velocity dispersion to become detectable.
Intermediate-mass black holes (IMBHs) have masses of about 100 to 100,000 solar masses. They remain elusive. Observing IMBHs in present-day globular clusters (GCs) would validate a formation channel for seed black holes in the early universe and info rm event predictions for gravitational wave facilities. Reaching a large number of GCs per galaxy is key, as models predict that only a few percent will have retained their gravitational-wave fostering IMBHs. Related, many galaxies will need to be examined to establish a robust sample of IMBHs in GCs. These needs can be meet by using a next-generation Very Large Array (ngVLA) to search for IMBHs in the GCs of hundreds of galaxies out to a distance of 25 Mpc. These galaxies hold tens of thousands of GCs in total. We describe how to convert an ngVLA signal from a GC to an IMBH mass according to a semi-empirical accretion model. Simulations of gas flows in GCs would help to improve the robustness of the conversion. Also, self-consistent dynamical models of GCs, with stellar and binary evolution in the presence of IMBHs, would help to improve IMBH retention predictions for present-day GCs.
Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from $sim 20 - 100, M_odot$. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. We describe numerical results for 42 models, covering a range of realistic initial conditions, including up to $1.6times10^6$ stars. In almost all models we find that significant numbers of black holes (up to $sim10^3$) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer mass segregation instability) is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.
The study of intermediate-mass black holes (IMBHs) is a young and promising field of research. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of g lobular clusters, today. Our group investigated the presence of intermediate-mass black holes for a sample of 10 Galactic globular clusters. We measured the inner kinematic profiles with integral-field spectroscopy and determined masses or upper limits of central black holes in each cluster. In combination with literature data we further studied the positions of our results on known black-hole scaling relations (such as M_bh - sigma) and found a similar but flatter correlation for IMBHs. Applying cluster evolution codes, the change in the slope could be explained with the stellar mass loss occurring in clusters in a tidal field over its life time. Furthermore, we present results from several numerical simulations on the topic of IMBHs and integral field units (IFUs). We ran N-body simulations of globular clusters containing IMBHs in a tidal field and studied their effects on mass-loss rates and remnant fractions and showed that an IMBH in the center prevents core collapse and ejects massive objects more rapidly. These simulations were further used to simulate IFU data cubes. For the specific case of NGC 6388 we simulated two different IFU techniques and found that velocity dispersion measurements from individual velocities are strongly biased towards lower values due to blends of neighbouring stars and background light. In addition, we use the Astrophysical Multipurpose Software Environment (AMUSE) to combine gravitational physics, stellar evolution and hydrodynamics to simulate the accretion of stellar winds onto a black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا