ﻻ يوجد ملخص باللغة العربية
A new family of the low-buckled Dirac materials which includes silicene, germanene, etc. is expected to possess a more complicated sequence of Landau levels than in pristine graphene. Their energies depend, among other factors, on the strength of the intrinsic spin-orbit (SO) and Rashba SO couplings and can be tuned by an applied electric field $E_z$. We studied the influence of the intrinsic Rashba SO term on the energies of Landau levels using both analytical and numerical methods. The quantum magnetic oscillations of the density of states are also investigated. A specific feature of the oscillations is the presence of the beats with the frequency proportional to the field $E_z$. The frequency of the beats becomes also dependent on the carrier concentration when Rashba interaction is present allowing experimental determination of its strength.
The wavefunction of massless Dirac fermions is a two-component spinor. In graphene, a one-atom-thick film showing two-dimensional Dirac-like electronic excitations, the two-component representation reflects the amplitude of the electron wavefunction
We investigate whether there could exist topological invariants of gapped 2D materials related to dissipationless thermoelectric transport at low temperatures. We give both macroscopic and microscopic arguments showing that thermoelectric transport c
We show that the disappearance of the chemical potential jumps over the range of perpendicular magnetic fields at fixed integer filling factor in a double quantum well with a tunnel barrier is caused by the interaction-induced level merging. The dist
Recently, negative longitudinal and positive in-plane transverse magnetoresistance have been observed in most topological Dirac/Weyl semimetals, and some other topological materials. Here we present a quantum theory of intrinsic magnetoresistance for
We study multielectron bubble phases in the $N=2$ and $N=3$ Landau levels in a high mobility GaAs/AlGaAs sample. We found that the longitudinal magnetoresistance versus temperature curves in the multielectron bubble region exhibit sharp peaks, irresp