ترغب بنشر مسار تعليمي؟ اضغط هنا

MARS15 Code Developments Driven by the Intensity Frontier Needs

149   0   0.0 ( 0 )
 نشر من قبل Mokhov, Nikolai
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MARS15(2012) is the latest version of a multi-purpose Monte-Carlo code developed since 1974 for detailed simulation of hadronic and electromagnetic cascades in an arbitrary 3-D geometry of shielding, accelerator, detector and spacecraft components with energy ranging from a fraction of an electronvolt to 100 TeV. Driven by needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, the code has been recently substantially improved and extended. These include inclusive and exclusive particle event generators in the 0.7 to 12 GeV energy range, proton inelastic interaction modeling below 20 MeV, implementation of the EGS5 code for electromagnetic shower simulation at energies from 1 keV to 20 MeV, stopping power description in compound materials, new module for DPA calculations for neutrons from a fraction of eV to 20-150 MeV, user-friendly DeTra-based method to calculate nuclide inventories, and new ROOT-based geometry.



قيم البحث

اقرأ أيضاً

83 - Alessandro Cianchi 2020
Wakefield accelerators are under development in many laboratories worldwide. They bring the promise of a high accelerating gradient, orders of magnitude higher than current machines. The reduction in the overall length of the accelerators will pave t he way to a wider use of such machines, for industrial, medical, research, and educational purposes. At the same time, all the equipment must be reduced as well, to keep the dimensions of the machine as small as possible. The two main challenges of the diagnostics for plasma accelerated electron beams are the ability to measure the 6D phase space properties with single shot techniques and the compactness to meet the requirements of a `table-top facility.
To rectify the problems of electron clouds observed in RHIC and unacceptable ohmic heating for superconducting magnets that can limit future machine upgrades, we started developing a robotic plasma deposition technique for $in-situ$ coating of the RH IC 316LN stainless steel cold bore tubes based on staged magnetrons mounted on a mobile mole for deposition of Cu followed by amorphous carbon (a-C) coating. The Cu coating reduces wall resistivity, while a-C has low SEY that suppresses electron cloud formation. Recent RF resistivity computations indicate that 10 {mu}m of Cu coating thickness is needed. But, Cu coatings thicker than 2 {mu}m can have grain structures that might have lower SEY like gold black. A 15-cm Cu cathode magnetron was designed and fabricated, after which, 30 cm long samples of RHIC cold bore tubes were coated with various OFHC copper thicknesses; room temperature RF resistivity measured. Rectangular stainless steel and SS discs were Cu coated. SEY of rectangular samples were measured at room; and, SEY of a disc sample was measured at cryogenic temperatures.
A high-intensity hyperon beam was constructed at CERN to deliver Sigma- to experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup allowed rapid changeover between hyperon and conventional hadron beam configurations. The beam provided a Sigma-flux of 1.4 x 10^5 per burst at mean momenta between 330 and 345 Gev/c, produced by about 3 x 10^10 protons of 450 GeV/c . At the experiment target the beam had a Sigma-/pi- ratio close to 0.4 and a size of 1.6 x 3.7 cm^2. The beam particle trajectories and their momenta were measured with a scintillating fibre hodoscope in the beam channel and a silicon microstrip detector at the exit of the channel. A fast transition radiation detector was used to identify the pion component of the beam.
117 - J. Bonis , R. Chiche , R. Cizeron 2011
As part of the R&D toward the production of high flux of polarised Gamma-rays we have designed and built a non-planar four-mirror optical cavity with a high finesse and operated it at a particle accelerator. We report on the main challenges of such c avity, such as the design of a suitable laser based on fiber technology, the mechanical difficulties of having a high tunability and a high mechanical stability in an accelerator environment and the active stabilization of such cavity by implementing a double feedback loop in a FPGA.
In 1974, Nelson, Kase, and Svenson published an experimental investigation on muon shielding using the SLAC high energy LINAC. They measured muon fluence and absorbed dose induced by a 18 GeV electron beam hitting a copper/water beam dump and attenua ted in a thick steel shielding. In their paper, they compared the results with the theoretical mode ls available at the time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results will then be compared between the codes, and with the SLAC data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا