ﻻ يوجد ملخص باللغة العربية
As part of the R&D toward the production of high flux of polarised Gamma-rays we have designed and built a non-planar four-mirror optical cavity with a high finesse and operated it at a particle accelerator. We report on the main challenges of such cavity, such as the design of a suitable laser based on fiber technology, the mechanical difficulties of having a high tunability and a high mechanical stability in an accelerator environment and the active stabilization of such cavity by implementing a double feedback loop in a FPGA.
As part of the positron source R&D for future $e^+-e^-$ colliders and Compton based compact light sources, a high finesse non-planar four-mirror Fabry-Perot cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first measurements o
We have been developing optical resonant cavities for laser-Compton scattering experiment at the Accelerator Test Facility in KEK. The main subject of the R&D is to increase laser pulse energy by coherently accumulating the pulses in an optical reson
The next generation of e+/e- colliders will require a very intense flux of gamma rays to allow high current polarized positrons to be produced. This can be achieved by converting polarized high energy photons in polarized pairs into a target. In that
A high-intensity hyperon beam was constructed at CERN to deliver Sigma- to experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup allowed rapid changeover between hyperon and conventional hadron beam configurations. The beam
The next generation of accelerators for Megawatt proton and heavy-ion beams moves us into a completely new domain of extreme specific energies of up to 0.1 MJ/g (Megajoule/gram) and specific power up to 1 TW/g (Terawatt/gram) in beam interactions wit