ﻻ يوجد ملخص باللغة العربية
We present evidence for the presence of a low-amplitude kinematically distinct component in the giant early-type galaxy M87, via datasets obtained with the SAURON and MUSE integral-field spectroscopic units. The MUSE velocity field reveals a strong twist of ~140 deg within the central 30 arcsec connecting outwards such a kinematically distinct core to a prolate-like rotation around the large-scale photometric major-axis of the galaxy. The existence of these kinematic features within the apparently round central regions of M87 implies a non-axisymmetric and complex shape for this galaxy, which could be further constrained using the presented kinematics. The associated orbital structure should be interpreted together with other tracers of the gravitational potential probed at larger scales (e.g., Globular Clusters, Ultra Compact Dwarfs, Planetary Nebulae): it would offer an insight in the assembly history of one of the brightest galaxies in the Virgo Cluster. These data also demonstrate the potential of the MUSE spectrograph to uncover low-amplitude spectral signatures.
MUSE observations of NGC5813 reveal a complex structure in the velocity dispersion map, previously hinted by SAURON observations. The structure is reminiscent of velocity dispersion maps of galaxies comprising two counter-rotating discs, and may expl
Aims. Interacting galaxies show unique irregularities in their kinematic structure. By investigating the spatially resolved kinematics and stellar population properties of galaxies that show irregularities, we can paint a detailed picture of the form
Studies of the kinematics of NGC 1407 have revealed complex kinematical structure, consisting of the outer galaxy, an embedded disc within a radius of $sim60$ arcsec, and a kinematically decoupled core (KDC) with a radius of less than 30arcsec. Howev
We report on the discovery of a rapidly co-rotating stellar and gas component in the nucleus of the shell elliptical NGC2865. The stellar component extends ~ 0.51/h100 kpc along the major axis, and shows depressed velocity dispersion and absorption l
We combine the Siding Spring Survey of RR Lyrae stars with the Southern Proper Motion Catalog 4, in order to detect and kinematically characterize overdensities in the inner halo of the Milky Way. We identify one such overdensity above the Galactic p