ترغب بنشر مسار تعليمي؟ اضغط هنا

A Kinematically-Distinct RR-Lyrae Overdensity in the Inner Regions of the Milky Way

313   0   0.0 ( 0 )
 نشر من قبل Dana Casetti-Dinescu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine the Siding Spring Survey of RR Lyrae stars with the Southern Proper Motion Catalog 4, in order to detect and kinematically characterize overdensities in the inner halo of the Milky Way. We identify one such overdensity above the Galactic plane, in quadrant 4 of the Galaxy. The overdensity extends at least 20 degrees in longitude, has an average heliocentric distance of 8 kpc with a depth of 4 kpc, and is confined within 4 kpc of the Galactic plane. Its metallicity distribution is distinct from that of the field population having a peak at -1.3 and a pronounced tail to -2.0. Proper motions indicate a net vertical motion away from the plane, and a low orbital angular momentum. Qualitatively, these orbit properties suggest a possible association with omega Centauris parent satellite. However, comparison to a specific omega Cen N-body disruption model does not give a good match with observations. Line-of-sight velocities, and more extensive N-body modelling will help clarify the nature of this overdensity.



قيم البحث

اقرأ أيضاً

179 - A. Savino , A. Koch , Z. Prudil 2020
The central kiloparsecs of the Milky Way are known to host an old, spheroidal stellar population, whose spatial and kinematical properties set it apart from the boxy/peanut structure that constitutes most of the central stellar mass. The nature of th is spheroidal population, whether a small classical bulge, the innermost stellar halo or a population of disk stars with large initial velocity dispersion, remains unclear. This structure is also a promising candidate to host some of the oldest stars in the Galaxy. Here we address the topic of the inner stellar spheroid age, using spectroscopic and photometric metallicities for a sample of 935 RR Lyrae stars that are constituents of this component. By means of stellar population synthesis, we derive an age-metallicity relation for RR Lyrae populations. We infer, for the RR Lyrae stars in the bulge spheroid, an extremely ancient age of $13.41 pm 0.54$ Gyr and conclude they were among the first stars to form in what is now the Milky Way galaxy. Our age estimate for the central spheroid shows remarkable agreement with the age profile that has been inferred for the Milky Way stellar halo, suggesting a connection between the two structures. However, we find mild evidence for a transition in the halo properties at $r_{rm GC} sim 5$~kpc. We also investigate formation scenarios for metal-rich RR Lyrae stars, such as binarity and helium variations, and whether they can provide alternative explanations for the properties of our sample. We conclude that, within our framework, the only viable alternative is to have younger, slightly helium-rich, RR Lyrae stars, a hypothesis that would open intriguing questions for the formation of the inner stellar spheroid.
We use a combination of spatial distribution and radial velocity to search for halo sub-structures in a sample of 412 RR Lyrae stars (RRLS) that covers a $sim 525$ square degrees region of the Virgo Overdensity (VOD) and spans distances from the Sun from 4 to 75 kpc. With a friends-of-friends algorithm we identified six high significance groups of RRLS in phase space, which we associate mainly with the VOD and with the Sagittarius stream. Four other groups were also flagged as less significant overdensities. Three high significance and 3 lower significance groups have distances between $sim 10$ and 20 kpc, which places them with the distance range attributed by others to the VOD. The largest of these is the Virgo Stellar Stream (VSS) at 19 kpc, which has 18 RRLS, a factor of 2 increase over the number known previously. While these VOD groups are distinct according to our selection cirteria, their overlap in position and distance, and, in a few cases, similarity in radial velocity are suggestive that they may not all stem separate accretion events. Even so, the VOD appears to be caused by more than one overdensity. The Sgr stream is a very obvious feature in the background of the VOD at a mean distance of 44 kpc. Two additional high significant groups were detected at distances $>40$ kpc. Their radial velocities and locations differ from the expected path of the Sgr debris in this part of the sky, and they are likely to be remnants of other accretion events.
The discovery of very distant stars in the halo of the Milky Way provides valuable tracers on the Milky Way mass and its formation. Beyond 100 kpc from the Galactic center, most of the stars are likely to be in faint dwarf galaxies or tidal debris fr om recently accreted dwarfs, making the outer reaches of the Galaxy important for understanding the Milky Ways accretion history. However, distant stars in the halo are scarce. In that context, RR Lyrae are ideal probes of the distant halo as they are intrinsically bright and thus can be seen at large distances, follow well-known period-luminosity relations that enable precise distance measurements, and are easily identifiable in time-series data. Therefore, a detailed study of RR Lyrae will help us understand the accreted outskirts of the Milky Way. In this contribution, we present the current state of our systematic search for distant RR Lyrae stars in the halo using the DECam imager at the 4m telescope on Cerro Tololo (Chile). The total surveyed area consists of more than 110 DECam fields (~ 350 sq. deg) and includes two recent independent campaigns carried out in 2017 and 2018 with which we have detected > 650 candidate RR Lyrae stars. Here we describe the methodology followed to analyze the two latest campaigns. Our catalog contains a considerable number of candidate RR Lyrae beyond 100 kpc, and reaches out up to ~ 250 kpc. The number of distant RR Lyrae found is consistent with recent studies of the outer halo. These stars provide a set of important probes of the mass of the Milky Way, the nature of the halo, and the accretion history of the Galactic outskirts.
RR Lyrae stars being distance indicators and tracers of old population serve as excellent probes of the structure, formation, and evolution of our Galaxy. Thousands of them are being discovered in ongoing wide-field surveys. The OGLE project conducts the Galaxy Variability Survey with the aim to detect and analyze variable stars, in particular of RRab type, toward the Galactic bulge and disk, covering a total area of 3000 deg^2. Observations in these directions also allow detecting background halo variables and unique studies of their properties and distribution at distances from the Galactic Center to even 40 kpc. In this contribution, we present the first results on the spatial distribution of the observed RRab stars, their metallicity distribution, the presence of multiple populations, and relations with the old bulge. We also show the most recent results from the analysis of RR Lyrae stars of the Sgr dwarf spheroidal galaxy, including its center, the globular cluster M54.
Most of known RR Lyraes are type ab RR Lyraes (RRLab), and they are the excellent tool to map the Milky Way and its substructures. We find that 1148 RRLab stars determined by Drake et al.(2013) have been observed by spectroscopic surveys of SDSS and LAMOST. We derived radial velocity dispersion, circular velocity and mass profile from 860 halo tracers in our paper I. Here, we present the stellar densities and radial velocity distributions of thick disk and halo of the Milky Way. The 288 RRLab stars located in the thick disk have the mean metallicity of [Fe/H]$=-1.02$. Three thick disk tracers have the radial velocity lower than 215 km $rm s^{-1}$. With 860 halo tracers which have a mean metallicity of [Fe/H]$=-1.33$, we find a double power-law of $n(r) propto r^{-2.8}$ and $n(r) propto r^{-4.8}$ with a break distance of 21 kpc to express the halo stellar density profile. The radial velocity dispersion at 50 kpc is around 78 km $rm s^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا