ﻻ يوجد ملخص باللغة العربية
It is known that any tropical polytope is the image under the valuation map of ordinary polytopes over the Puiseux series field. The latter polytopes are called lifts of the tropical polytope. We prove that any pure tropical polytope is the intersection of the tropical half-spaces given by the images under the valuation map of the facet-defining half-spaces of a certain lift. We construct this lift explicitly, taking into account geometric properties of the given polytope. Moreover, when the generators of the tropical polytope are in general position, we prove that the above property is satisfied for any lift. This solves a conjecture of Develin and Yu.
We study the number of facets of the convex hull of n independent standard Gaussian points in d-dimensional Euclidean space. In particular, we are interested in the expected number of facets when the dimension is allowed to grow with the sample size.
The secondary polytope of a point configuration A is a polytope whose face poset is isomorphic to the poset of all regular subdivisions of A. While the vertices of the secondary polytope - corresponding to the triangulations of A - are very well stud
A neighborliness property of marginal polytopes of hierarchical models, depending on the cardinality of the smallest non-face of the underlying simplicial complex, is shown. The case of binary variables is studied explicitly, then the general case is
Considering $ntimes ntimes n$ stochastic tensors $(a_{ijk})$ (i.e., nonnegative hypermatrices in which every sum over one index $i$, $j$, or $k$, is 1), we study the polytope ($Omega_{n}$) of all these tensors, the convex set ($L_n$) of all tensors i
We study the integer decomposition property of lattice polytopes associated with the $n$-dimensional smooth complete fans with at most $n+3$ rays. Using the classification of smooth complete fans by Kleinschmidt and Batyrev and a reduction to lower d