ﻻ يوجد ملخص باللغة العربية
Pattern formation often occurs in spatially extended physical, biological and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular revealing for the Swift-Hohenberg equations a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of an weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
We derive the model equations describing the thermoacoustic resonator, that is, an acoustical resonator containing a viscous medium inside. Previous studies on this system have addressed this sytem in the frame of the plane-wave approximation, we ext
The dynamical response of Coulomb-interacting particles in nano-clusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap-symmetry, both the spatial and temporal correlations undergo s
This article deals with the estimation of fractal dimension of spatio-temporal patterns that are generated by numerically solving the Swift Hohenberg (SH) equation. The patterns were converted into a spatial series (analogous to time series) which we
We report nonlinear vibration localisation in a system of two symmetric weakly coupled nonlinear oscillators. A two degree-of-freedom model with piecewise linear stiffness shows bifurcations to localised solutions. An experimental investigation emplo
Noise through its interaction with the nonlinearity of the living systems can give rise to counter-intuitive phenomena. In this paper we shortly review noise induced effects in different ecosystems, in which two populations compete for the same resou