ﻻ يوجد ملخص باللغة العربية
This article deals with the estimation of fractal dimension of spatio-temporal patterns that are generated by numerically solving the Swift Hohenberg (SH) equation. The patterns were converted into a spatial series (analogous to time series) which were shown to be chaotic by evaluating the largest Lyapunov exponent. We have applied several nonlinear time-series analysis techniques like Detrended fluctuation and Rescaled range on these spatial data to obtain Hurst exponent values that reveal spatial series data to be long range correlated. We have estimated fractal dimension from the Hurst and power law exponent and found the value lying between 1 and 2. The novelty of our approach lies in estimating fractal dimension using image to data conversion and spatial series analysis techniques, crucial for experimentally obtained images.
We present a method for both cross estimation and iterated time series prediction of spatio temporal dynamics based on reconstructed local states, PCA dimension reduction, and local modelling using nearest neighbour methods. The effectiveness of this
We introduce a generalization of Higuchis estimator of the fractal dimension as a new way to characterize the multifractal spectrum of univariate time series. The resulting multifractal Higuchi dimension analysis (MF-HDA) method considers the order-$
We present a simple mathematical model in which a time averaged pattern emerges out of spatio-temporal chaos as a result of the collective action of chaotic fluctuations. Our evolution equation possesses spatial translational symmetry under a periodi
We discover new type of interference patterns generated in the focusing nonlinear Schrodinger equation (NLSE) with localised periodic initial conditions. At special conditions, found in the present work, these patterns exhibit novel chess-board-like
Due to the dynamic nature, chaotic time series are difficult predict. In conventional signal processing approaches signals are treated either in time or in space domain only. Spatio-temporal analysis of signal provides more advantages over convention