ترغب بنشر مسار تعليمي؟ اضغط هنا

Framed Cord Algebra Invariant of Knots in $S^1 times S^2$

204   0   0.0 ( 0 )
 نشر من قبل Shawn X. Cui
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize Ngs two-variable algebraic/combinatorial $0$-th framed knot contact homology for framed oriented knots in $S^3$ to knots in $S^1 times S^2$, and prove that the resulting knot invariant is the same as the framed cord algebra of knots. Actually, our cord algebra has an extra variable, which potentially corresponds to the third variable in Ngs three-variable knot contact homology. Our main tool is Lins generalization of the Markov theorem for braids in $S^3$ to braids in $S^1 times S^2$. We conjecture that our framed cord algebras are always finitely generated for non-local knots.



قيم البحث

اقرأ أيضاً

We establish a number of results about smooth and topological concordance of knots in $S^1times S^2$. The winding number of a knot in $S^1times S^2$ is defined to be its class in $H_1(S^1times S^2;mathbb{Z})cong mathbb{Z}$. We show that there is a un ique smooth concordance class of knots with winding number one. This improves the corresponding result of Friedl-Nagel-Orson-Powell in the topological category. We say a knot in $S^1times S^2$ is slice (resp. topologically slice) if it bounds a smooth (resp. locally flat) disk in $D^2times S^2$. We show that there are infinitely many topological concordance classes of non-slice knots, and moreover, for any winding number other than $pm 1$, there are infinitely many topological concordance classes even within the collection of slice knots. Additionally we demonstrate the distinction between the smooth and topological categories by constructing infinite families of slice knots that are topologically but not smoothly concordant, as well as non-slice knots that are topologically slice and topologically concordant, but not smoothly concordant.
160 - Feifei Chen , Fan Ding , Youlin Li 2013
We classify the Legendrian torus knots in S^1times S^2 with its standard tight contact structure up to Legendrian isotopy.
Let $M_n$ be the connect sum of $n$ copies of $S^2 times S^1$. A classical theorem of Laudenbach says that the mapping class group $text{Mod}(M_n)$ is an extension of $text{Out}(F_n)$ by a group $(mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $text{Mod}(M_n)$ is the semidirect product of $text{Out}(F_n)$ by $(mathbb{Z}/2)^n$, which $text{Out}(F_n)$ acts on via the dual of the natural surjection $text{Out}(F_n) rightarrow text{GL}_n(mathbb{Z}/2)$. Our splitting takes $text{Out}(F_n)$ to the subgroup of $text{Mod}(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbachs original proof, including the identification of the twist subgroup with $(mathbb{Z}/2)^n$.
330 - Jianfeng Lin , Daniel Ruberman , 2017
We study the Seiberg-Witten invariant $lambda_{rm{SW}} (X)$ of smooth spin $4$-manifolds $X$ with integral homology of $S^1times S^3$ defined by Mrowka, Ruberman, and Saveliev as a signed count of irreducible monopoles amended by an index-theoretic c orrection term. We prove a splitting formula for this invariant in terms of the Fr{o}yshov invariant $h(X)$ and a certain Lefschetz number in the reduced monopole Floer homology of Kronheimer and Mrowka. We apply this formula to obstruct existence of metrics of positive scalar curvature on certain 4-manifolds, and to exhibit new classes of integral homology $3$-spheres of Rohlin invariant one which have infinite order in the homology cobordism group.
332 - Yuto Moriwaki 2021
It is known that there are 48 Virasoro algebras acting on the monster conformal field theory. We call conformal field theories with such a property, which are not necessarily chiral, code conformal field theories. In this paper, we introduce a notion of a framed algebra, which is a finite-dimensional non-associative algebra, and showed that the category of framed algebras and the category of code conformal field theories are equivalent. We have also constructed a new family of integrable conformal field theories using this equivalence. These conformal field theories are expected to be useful for the study of moduli spaces of conformal field theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا