ﻻ يوجد ملخص باللغة العربية
Let $M_n$ be the connect sum of $n$ copies of $S^2 times S^1$. A classical theorem of Laudenbach says that the mapping class group $text{Mod}(M_n)$ is an extension of $text{Out}(F_n)$ by a group $(mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $text{Mod}(M_n)$ is the semidirect product of $text{Out}(F_n)$ by $(mathbb{Z}/2)^n$, which $text{Out}(F_n)$ acts on via the dual of the natural surjection $text{Out}(F_n) rightarrow text{GL}_n(mathbb{Z}/2)$. Our splitting takes $text{Out}(F_n)$ to the subgroup of $text{Mod}(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbachs original proof, including the identification of the twist subgroup with $(mathbb{Z}/2)^n$.
We calculate the abelianizations of the level $L$ subgroup of the genus $g$ mapping class group and the level $L$ congruence subgroup of the $2g times 2g$ symplectic group for $L$ odd and $g geq 3$.
We construct a minimal generating set of the level 2 mapping class group of a nonorientable surface of genus $g$, and determine its abelianization for $gge4$.
For some $g geq 3$, let $Gamma$ be a finite index subgroup of the mapping class group of a genus $g$ surface (possibly with boundary components and punctures). An old conjecture of Ivanov says that the abelianization of $Gamma$ should be finite. In t
We prove that various subgroups of the mapping class group $Mod(Sigma)$ of a surface $Sigma$ are at least exponentially distorted. Examples include the Torelli group (answering a question of Hamenstadt), the point-pushing and surface braid subgroups,
Let $k$ be a subring of the field of rational functions in $x, v, s$ which contains $x^{pm 1}, v^{pm 1}, s^{pm 1}$. If $M$ is an oriented 3-manifold, let $S(M)$ denote the Homflypt skein module of $M$ over $k$. This is the free $k$-module generated b