ﻻ يوجد ملخص باللغة العربية
We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from dynamical friction, tidal stripping, and tidal heating, allowing us to dynamically evolve the subhalo distribution. We calibrate our nonlinear evolution scheme to the CDM subhalo mass function in the Aquarius N-body simulation, producing a subhalo mass function within the range of simulations. We find tidal effects to be the dominant mechanism of nonlinear evolution in the subhalo population. Finally, we compute the subhalo mass function for $m_chi=1.5$ keV WDM including the effects of nonlinear evolution, and compare radial number densities and mass density profiles of subhalos in CDM and WDM models. We show that all three signatures differ between the two dark matter models, suggesting that probes of substructure may be able to differentiate between them.
We describe a methodology to accurately compute halo mass functions, progenitor mass functions, merger rates and merger trees in non-cold dark matter universes using a self-consistent treatment of the generalized extended Press-Schechter formalism. O
We investigate the possibility of applying machine learning techniques to images of strongly lensed galaxies to detect a low mass cut-off in the spectrum of dark matter sub-halos within the lens system. We generate lensed images of systems containing
High-resolution N-body simulations of dark matter halos indicate that the Milky Way contains numerous subhalos. When a dark matter subhalo passes in front of a star, the light from that star will be deflected by gravitational lensing, leading to a sm
The anomalous 3.55 keV X-ray line recently detected towards a number of massive dark matter objects may be interpreted as the radiative decays of 7.1 keV mass sterile neutrino dark matter. Depending on its parameters, the sterile neutrino can range f
The Milky Ways dark matter halo is expected to host numerous low-mass subhalos with no detectable associated stellar component. Such subhalos are invisible unless their dark matter annihilates to visible states such as photons. One of the established