ﻻ يوجد ملخص باللغة العربية
We report an observational estimate of the rate of stellar tidal disruption flares (TDFs) in inactive galaxies, based on a successful search for these events among transients in galaxies using archival SDSS multi-epoch imaging data (Stripe 82). This search yielded 186 nuclear flares in galaxies, of which two are excellent TDF candidates. Because of the systematic nature of the search, the very large number of galaxies, the long time of observation, and the fact that non-TDFs were excluded without resorting to assumptions about TDF characteristics, this study provides an unparalleled opportunity to measure the TDF rate. To compute the rate of optical stellar tidal disruption events, we simulate our entire pipeline to obtain the efficiency of detection. The rate depends on the light curves of TDFs, which are presently still poorly constrained. Using only the observed part of the SDSS light curves gives a model-independent upper limit to the optical TDF rate: < 2 10^-4 per year per galaxy (90% CL). We develop three empirical models of the light curves, based on the two SDSS light curves and two more recent and better-sampled Pan-STARRS TDF light curves, leading to our best-estimate of the rate: (1.5 - 2.0)_{-1.3}^{+2.7} 10^-5 per year per galaxy. We explore the modeling uncertainties by considering two theoretically motivated light curve models, as well as two different relationships between black hole mass and galaxy luminosity, and two different treatments of the cutoff in the visibility of TDFs at large black hole mass. From this we conclude that these sources of uncertainty are not significantly larger than the statistical ones. Our results are applicable for galaxies hosting black holes with mass in the range of few million to 10^8 solar masses, and translates to a volumetric TDF rate of (4 - 8) 10^-8 per year per cubic Mpc.
We analyze the early growth stage of direct-collapse black holes (DCBHs) with $sim 10^{5} rm M_odot$, which are formed by collapse of supermassive stars in atomic-cooling halos at $z gtrsim 10$. A nuclear accretion disk around a newborn DCBH is grav
Many decades of observations of active galactic nuclei and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a ma
Tidal disruption events occur rarely in any individual galaxy. Over the last decade, however, time-domain surveys have begun to accumulate statistical samples of these flares. What dynamical processes are responsible for feeding stars to supermassive
Stars that pass within the Roche radius of a supermassive black hole will be tidally disrupted, yielding a sudden injection of gas close to the black hole horizon which produces an electromagnetic flare. A few dozen of these flares have been discover
We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10 to 1000 Myr ago, indicating that TDEs arise at differ