ﻻ يوجد ملخص باللغة العربية
We develop a superfield formulation of gauge and matter field theories on a two-dimensional sphere with rigid N=(2,2) as well as extended supersymmetry. The construction is based on a supercoset SU(2|1)/[U(1) x U(1)] containing $S^2$ as the bosonic subspace. We derive an explicit form of supervielbein and covariant derivatives on this coset, and use them to construct classical superfield actions for gauge and matter supermultiplets in this superbackground. We then apply superfield methods for computing one-loop partition functions of these theories and demonstrate how the localization technique works directly in the superspace.
We consider the superfield formulation of supersymmetric gauge and matter field theories on a three-dimensional sphere with rigid ${cal N}=2$ supersymmetry, as well as with ${cal N}> 2$. The construction is based on a supercoset $SU(2|1)/U(1)$ contai
A solution to the infinite coupling problem for N=2 conformal supersymmetric gauge theories in four dimensions is presented. The infinitely-coupled theories are argued to be interacting superconformal field theories (SCFTs) with weakly gauged flavor
We study N = 2* theories with gauge group U(N) and use equivariant localization to calculate the quantum expectation values of the simplest chiral ring elements. These are expressed as an expansion in the mass of the adjoint hypermultiplet, with coef
We construct 4D $mathcal{N}=2$ theories on an infinite family of 4D toric manifolds with the topology of connected sums of $S^2 times S^2$. These theories are constructed through the dimensional reduction along a non-trivial $U(1)$-fiber of 5D theori
One of the hallmarks of 6D superconformal field theories (SCFTs) is that on a partial tensor branch, all known theories resemble quiver gauge theories with links comprised of 6D conformal matter, a generalization of weakly coupled hypermultiplets. In