ﻻ يوجد ملخص باللغة العربية
We consider the superfield formulation of supersymmetric gauge and matter field theories on a three-dimensional sphere with rigid ${cal N}=2$ supersymmetry, as well as with ${cal N}> 2$. The construction is based on a supercoset $SU(2|1)/U(1)$ containing $S^3$ as the bosonic subspace. We derive an explicit form of $SU(2|1)/U(1)$ supervielbein and covariant derivatives, and use them to construct classical superfield actions for gauge and matter supermultiplets in this superbackground. We then apply superfield methods for computing one-loop partition functions of these theories and demonstrate how the localization technique works directly in the superspace.
We develop a superfield formulation of gauge and matter field theories on a two-dimensional sphere with rigid N=(2,2) as well as extended supersymmetry. The construction is based on a supercoset SU(2|1)/[U(1) x U(1)] containing $S^2$ as the bosonic s
We study the phase diagrams of $Nc= infty$ vector-like, asymptotically free gauge theories as a function of volume, on $S^3times S^1$. The theories of interest are the ones with fermions in two index representations [adjoint, (anti)symmetric, and bif
We study the twisted index of 4d $mathcal{N}$ = 2 class S theories on a closed hyperbolic 3-manifold $M_3$. Via 6d picture, the index can be written in terms of topological invariants called analytic torsions twisted by irreducible flat connections o
We show that a certain class of nonlocal scalar models, with a kinetic operator inspired by string field theory, is equivalent to a system which is local in the coordinates but nonlocal in an auxiliary evolution variable. This system admits both Lagr
We discuss reductions of general N=1 four dimensional gauge theories on S^2. The effective two dimensional theory one obtains depends on the details of the coupling of the theory to background fields, which can be translated to a choice of R-symmetry