ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Particle Elastic Scattering in a Finite Volume Including QED

203   0   0.0 ( 0 )
 نشر من قبل Silas Beane
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of long-range interactions violates a condition necessary to relate the energy of two particles in a finite volume to their S-matrix elements in the manner of Luscher. While in infinite volume, QED contributions to low-energy charged particle scattering must be resummed to all orders in perturbation theory (the Coulomb ladder diagrams), in a finite volume the momentum operator is gapped, allowing for a perturbative treatment. The leading QED corrections to the two-particle finite-volume energy quantization condition below the inelastic threshold, as well as approximate formulas for energy eigenvalues, are obtained. In particular, we focus on two spinless hadrons in the A1+ irreducible representation of the cubic group, and truncate the strong interactions to the s-wave. These results are necessary for the analysis of Lattice QCD+QED calculations of charged-hadron interactions, and can be straightforwardly generalized to other representations of the cubic group, to hadrons with spin, and to include higher partial waves.



قيم البحث

اقرأ أيضاً

In this work, we use an extension of the quantization condition, given in Ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original fo rm of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles.
Using the general formalism presented in Refs. [1,2], we study the finite-volume effects for the $mathbf{2}+mathcal{J}tomathbf{2}$ matrix element of an external current coupled to a two-particle state of identical scalars with perturbative interactio ns. Working in a finite cubic volume with periodicity $L$, we derive a $1/L$ expansion of the matrix element through $mathcal O(1/L^5)$ and find that it is governed by two universal current-dependent parameters, the scalar charge and the threshold two-particle form factor. We confirm the result through a numerical study of the general formalism and additionally through an independent perturbative calculation. We further demonstrate a consistency with the Feynman-Hellmann theorem, which can be used to relate the $1/L$ expansions of the ground-state energy and matrix element. The latter gives a simple insight into why the leading volume corrections to the matrix element have the same scaling as those in the energy, $1/L^3$, in contradiction to earlier work, which found a $1/L^2$ contribution to the matrix element. We show here that such a term arises at intermediate stages in the perturbative calculation, but cancels in the final result.
There exist two methods to study two-baryon systems in lattice QCD: the direct method which extracts eigenenergies from the plateaux of the temporal correlator and the HAL QCD method which extracts observables from the non-local potential associated with the tempo-spatial correlator. Although the two methods should give the same results theoretically, qualitatively different results have been reported. Recently, we pointed out that the separation of the ground state from the excited states is crucial to obtain sensible results in the former, while both states provide useful signals in the latter. In this paper, we identify the contribution of each state in the direct method by decomposing the two-baryon correlators into the finite-volume eigenmodes obtained from the HAL QCD method. We consider the $XiXi$ system in the $^1$S$_0$ channel at $m_pi = 0.51$ GeV in 2+1 flavor lattice QCD using the wall and smeared quark sources. We demonstrate that the pseudo-plateau at early time slices (t = 1~2 fm) from the smeared source in the direct method indeed originates from the contamination of the excited states, and the true plateau with the ground state saturation is realized only at t > 5~15 fm corresponding to the inverse of the lowest excitation energy. We also demonstrate that the two-baryon operator can be optimized by utilizing the finite-volume eigenmodes, so that (i) the finite-volume energy spectra from the HAL QCD method agree with those from the optimized temporal correlator and (ii) the correct spectra would be accessed in the direct method only if highly optimized operators are employed. Thus we conclude that the long-standing issue on the consistency between the Luschers finite volume method and the HAL QCD method for two baryons is now resolved: They are consistent with each other quantitatively only if the excited contamination is properly removed in the former.
Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volu me observables. As the formalism is complicated, it is important to provide non-trivial checks on the final results and also to explore limiting cases in which more straightforward predications may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge is volume-independent and equal to the total charge of the two-particle state. Second, we study the implications for a two-particle bound state. We demonstrate that the infinite-volume limit reproduces the expected matrix element and derive the leading finite-volume corrections to this result for a scalar current. Finally, we provide numerical estimates for the expected size of volume effects in future lattice QCD calculations of the deuterons scalar charge. We find that these effects completely dominate the infinite-volume result for realistic lattice volumes and that applying the present formalism, to analytically remove an infinite-series of leading volume corrections, is crucial to reliably extract the infinite-volume charge of the state.
On the basis of the Luschers finite volume formula, a simple test (consistency check or sanity check) is introduced and applied to inspect the recent claims of the existence of the nucleon-nucleon ($NN$) bound state(s) for heavy quark masses in latti ce QCD. We show that the consistency between the scattering phase shifts at $k^2 > 0$ and/or $k^2 < 0$ obtained from the lattice data and the behavior of phase shifts from the effective range expansion (ERE) around $k^2=0$ exposes the validity of the original lattice data, otherwise such information is hidden in the energy shift $Delta E$ of the two nucleons on the lattice. We carry out this sanity check for all the lattice results in the literature claiming the existence of the $NN$ bound state(s) for heavy quark masses, and find that (i) some of the $NN$ data show clear inconsistency between the behavior of ERE at $k^2 > 0$ and that at $k^2 < 0$, (ii) some of the $NN$ data exhibit singular behavior of the low energy parameter (such as the divergent effective range) at $k^2<0$, (iii) some of the $NN$ data have the unphysical residue for the bound state pole in S-matrix, and (iv) the rest of the $NN$ data are inconsistent among themselves. Furthermore, we raise a caution of using the ERE in the case of the multiple bound states. Our finding, together with the fake plateau problem previously pointed out by the present authors, brings a serious doubt on the existence of the $NN$ bound states for pion masses heavier than 300 MeV in the previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا