ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating multiple merger pathways to the central kinematics of early-type galaxies

82   0   0.0 ( 0 )
 نشر من قبل Aaron J. Romanowsky
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional integral field surveys such as ATLAS^3D are producing rich observational data sets yielding insights into galaxy formation. These new kinematic observations have highlighted the need to understand the evolutionary mechanisms leading to a spectrum of fast-rotators and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamical simulations sampling idealized galaxy merger scenarios constructed from model spiral galaxies. Idealized and controlled simulations of this sort complement the more realistic cosmological simulations by isolating and analyzing the effects of specific parameters, as we do in this paper. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericenter, orbital ellipticity, and spin with remnant kinematic properties. We create kinematic profiles of these 95 simulations comparable to ATLAS^3D data. By constructing remnant profiles of the projected specific angular momentum (lambda_R = <R|V|> / <sqrt(V^2+sigma^2)>, triaxiality, and measuring the incidences of kinematic twists and kinematically decoupled cores, we distinguish between varying formation scenarios. We find that binary mergers nearly always form fast rotators. Slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers, but are not as round as the ATLAS^3D galaxies. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS^3D rotators.



قيم البحث

اقرأ أيضاً

Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is pecu liar as X-ray halos of these galaxies are expected to destroy dust in 10 Myr (or less). This has sparked a debate regarding the origin of the dust: is it internally produced by asymptotic giant branch (AGB) stars, or is it accreted externally through mergers? We examine the 2D stellar and ionised gas kinematics of dusty ETGs using IFS observations from the SAMI galaxy survey, and integrated star-formation rates, stellar masses, and dust masses from the GAMA survey. Only 8% (4/49) of visually-classified ETGs are kinematically consistent with being dispersion-supported systems. These dispersion-dominated galaxies exhibit discrepancies between stellar and ionised gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star-formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining 90% of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of rotation-dominated galaxies. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low stellar mass when compared to dispersion-dominated galaxies. This means dust will be long lived and thus these galaxies do not require external scenarios for the origin of their dust content.
We investigate the evolution of dark and luminous matter in the central regions of early-type galaxies (ETGs) up to z ~ 0.8. We use a spectroscopically selected sample of 154 cluster and field galaxies from the EDisCS survey, covering a wide range in redshifts (z ~ 0.4-0.8), stellar masses ($log M_{star}/ M_{odot}$ ~ 10.5-11.5 dex) and velocity dispersions ($sigma_{star}$ ~ 100-300 , km/s). We obtain central dark matter (DM) fractions by determining the dynamical masses from Jeans modelling of galaxy aperture velocity dispersions and the $M_{star}$ from galaxy colours, and compare the results with local samples. We discuss how the correlations of central DM with galaxy size (i.e. the effective radius, $R_{rm e}$), $M_{star}$ and $sigma_{star}$ evolve as a function of redshift, finding clear indications that local galaxies are, on average, more DM dominated than their counterparts at larger redshift. This DM fraction evolution with $z$ can be only partially interpreted as a consequence of the size-redshift evolution. We discuss our results within galaxy formation scenarios, and conclude that the growth in size and DM content which we measure within the last 7 Gyr is incompatible with passive evolution, while it is well reproduced in the multiple minor merger scenario. We also discuss the impact of the IMF on our DM inferences and argue that this can be non-universal with the lookback time. In particular, we find the Salpeter IMF can be better accommodated by low redshift systems, while producing stellar masses at high-$z$ which are unphysically larger than the estimated dynamical masses (particularly for lower-$sigma_{star}$ systems).
232 - Tod R. Lauer 2012
I have combined the Emsellem et al. ATLAS3D rotation measures of a large sample of early-type galaxies with HST-based classifications of their central structure to characterize the rotation velocities of galaxies with cores. Core galaxies rotate slow ly, while power-law galaxies (galaxies that lack cores) rotate rapidly, confirming the analysis of Faber et al. Significantly, the amplitude of rotation sharply discriminates between the two types in the -19 > Mv > -22 domain over which the two types coexist. The slow rotation in the small set of core galaxies with Mv > -20, in particular, brings them into concordance with the more massive core galaxies. The ATLAS3D fast-rotating and slow-rotating early-type galaxies are essentially the same as power-law and core galaxies, respectively, or the Kormendy & Bender two families of elliptical galaxies based on rotation, isophote shape, and central structure. The ATLAS3D fast rotators do include roughly half of the core galaxies, but their rotation-amplitudes are always at the lower boundary of that subset. Essentially all core galaxies have ATLAS3D rotation-amplitudes lambda_(R_e/2) <= 0.25, while all galaxies with lambda_(R_e/2) > 0.25 and figure eccentricity > 0.2 lack cores. Both figure rotation and the central structure of early-type galaxies should be used together to separate systems that appear to have formed from wet versus dry mergers.
We measure the stellar populations as a function of radius for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude M_K < -25.3 mag, or stellar mass M* 4x10^11 M_sun, within 108 Mpc. We are able to measure reliable stellar population parameters for individual galaxies out to 10-20 kpc (1-3 R_e) depending on the galaxy. Focusing on ~R_e (~10 kpc), we find significant correlations between the abundance ratios, sigma, and M* at large radius, but we also find that the abundance ratios saturate in the highest-mass bin. We see a strong correlation between the kurtosis of the line of sight velocity distribution (h4) and the stellar population parameters beyond R_e. Galaxies with higher radial anisotropy appear to be older, with metal-poorer stars and enhanced [alpha/Fe]. We suggest that the higher radial anisotropy may derive from more accretion of small satellites. Finally, we see some evidence for correlations between environmental metrics (measured locally and on >5 Mpc scales) and the stellar populations, as expected if satellites are quenched earlier in denser environments.
We perform numerical simulations on the merger of multiple black holes (BHs) in primordial gas at early cosmic epochs. We consider two cases of BH mass: $M_{BH} = 30 M_{odot}$ and $M_{BH} = 10^4 M_{odot}$. Attention is concentrated on the effect of t he dynamical friction by gas in a host object. The simulations incorporate such general relativistic effects as the pericentre shift and gravitational wave emission. As a result, we find that multiple BHs are able to merge into one BH within 100 Myr in a wide range of BH density. The merger mechanism is revealed to be categorized into three types: gas-drag-driven merger (type A), interplay-driven merger (type B), and three-body-driven merger (type C). We find the relation between the merger mechanism and the ratio of the gas mass within the initial BH orbit ($M_{gas}$) to the total BH mass (${Sigma}M_{BH}$). Type A merger occurs if $M_{gas} gtrsim 10^5 {Sigma}M_{BH}$, type B if $M_{gas} lesssim 10^5 {Sigma}M_{BH}$, and type C if $M_{gas} ll 10^5 {Sigma}M_{BH}$. Supposing the gas and BH density based on the recent numerical simulations on first stars, all the BH remnants from first stars are likely to merge into one BH through the type B or C mechanism. Also, we find that multiple massive BHs ($M_{BH} = 10^4 M_{odot}$) distributed over several parsec can merge into one BH through the type B mechanism, if the gas density is higher than $5times 10^6$ cm$^{-3}$. The present results imply that the BH merger may contribute significantly to the formation of supermassive BHs at high redshift epochs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا