ﻻ يوجد ملخص باللغة العربية
We perform numerical simulations on the merger of multiple black holes (BHs) in primordial gas at early cosmic epochs. We consider two cases of BH mass: $M_{BH} = 30 M_{odot}$ and $M_{BH} = 10^4 M_{odot}$. Attention is concentrated on the effect of the dynamical friction by gas in a host object. The simulations incorporate such general relativistic effects as the pericentre shift and gravitational wave emission. As a result, we find that multiple BHs are able to merge into one BH within 100 Myr in a wide range of BH density. The merger mechanism is revealed to be categorized into three types: gas-drag-driven merger (type A), interplay-driven merger (type B), and three-body-driven merger (type C). We find the relation between the merger mechanism and the ratio of the gas mass within the initial BH orbit ($M_{gas}$) to the total BH mass (${Sigma}M_{BH}$). Type A merger occurs if $M_{gas} gtrsim 10^5 {Sigma}M_{BH}$, type B if $M_{gas} lesssim 10^5 {Sigma}M_{BH}$, and type C if $M_{gas} ll 10^5 {Sigma}M_{BH}$. Supposing the gas and BH density based on the recent numerical simulations on first stars, all the BH remnants from first stars are likely to merge into one BH through the type B or C mechanism. Also, we find that multiple massive BHs ($M_{BH} = 10^4 M_{odot}$) distributed over several parsec can merge into one BH through the type B mechanism, if the gas density is higher than $5times 10^6$ cm$^{-3}$. The present results imply that the BH merger may contribute significantly to the formation of supermassive BHs at high redshift epochs.
Understanding the processes that drive the formation of black holes (BHs) is a key topic in observational cosmology. While the observed $M_{mathrm{BH}}$--$M_{mathrm{Bulge}}$ correlation in bulge-dominated galaxies is thought to be produced by major m
An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback
We discuss the merger process of binary black holes with Hawking radiation taken into account. Besides the redshifted radiation to infinity, binary black holes can exchange radiation between themselves, which is first redshifted and then blueshifted
One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift ran
We addressed the so far unexplored issue of outflows induced by exponentially growing power sources, focusing on early supermassive black holes (BHs). We assumed that these objects grow to $10^9;M_{odot}$ by z=6 by Eddington-limited accretion and con