ﻻ يوجد ملخص باللغة العربية
We demonstrate that the superconducting critical temperature (Tc) of thin niobium films can be electrically modulated in a liquid-gated geometry device. Tc can be suppressed and enhanced by applying positive and negative gate voltage, respectively, in a reversible manner within a range of about 0.1 K. At a fixed temperature below Tc, we observed that the superconducting critical current can be modulated by gate voltage. This result suggests a possibility of an electrically-controlled switching device operating at or above liquid helium temperature, where superconductivity can be turned on or off solely by the applied gate voltage.
Electrical generation of THz spin waves is theoretically explored in an antiferromangetic nanostrip via the current-induced spin-orbit torque. The analysis based on micromagnetic simulations clearly illustrates that the Neel-vector oscillations excit
We present a high-resolution microwave spectrometer to measure the frequency-dependent complex conductivity of a superconducting thin film near the critical temperature. The instrument is based on a broadband measurement of the complex reflection coe
We investigate thin film resistive thermometry based on metal-to-insulator-transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance have been calibrated versus temperature and magnetic field
With a reduction in the average grain size in nanostructured films of elemental Nb, we observe a systematic crossover from metallic to weakly-insulating behavior. An analysis of the temperature dependence of the resistivity in the insulating phase cl
Thin superconducting films form a unique platform for geometrically-confined, strongly-interacting electrons. They allow an inherent competition between disorder and superconductivity, which in turn enables the intriguing superconducting-to-insulator