ﻻ يوجد ملخص باللغة العربية
We present a high-resolution microwave spectrometer to measure the frequency-dependent complex conductivity of a superconducting thin film near the critical temperature. The instrument is based on a broadband measurement of the complex reflection coefficient, $S_{rm 11}$, of a coaxial transmission line, which is terminated to a thin film sample with the electrodes in a Corbino disk shape. In the vicinity of the critical temperature, the standard calibration technique using three known standards fails to extract the strong frequency dependence of the complex conductivity induced by the superconducting fluctuations. This is because a small unexpected difference between the phase parts of $S_{rm 11}$ for a short and load standards gives rise to a large error in the detailed frequency dependence of the complex conductivity near the superconducting transition. We demonstrate that a new calibration procedure using the normal-state conductivity of a sample as a load standard resolves this difficulty. The high quality performance of this spectrometer, which covers the frequency range between 0.1 GHz and 10 GHz, the temperature range down to 10 K, and the magnetic field range up to 1 T, is illustrated by the experimental results on several thin films of both conventional and high temperature superconductors.
Thin superconducting films form a unique platform for geometrically-confined, strongly-interacting electrons. They allow an inherent competition between disorder and superconductivity, which in turn enables the intriguing superconducting-to-insulator
We study the critical charge dynamics of the superconducting to the normal-state transition for LSCO thin films with a wide range of the Sr concentration, by measuring the frequency-dependent excess parts of the complex microwave conductivity, which
FeTe, a non-superconducting parent compound in the iron-chalcogenide family, becomes superconducting after annealing in oxygen. Under the presence of magnetism, spin-orbit coupling, inhomogeneity and lattice distortion, the nature of its superconduct
The carrier concentration of Tl2Ba2CaCu2O8 films was modified by annealing in N2 gas. X-ray analysis of the structure and the oxygen content revealed a correspondence between carrier concentration and oxygen depletion. The TC and nonlinear surface im
Vortices in superconductors driven at microwave frequencies exhibit a response related to the interplay between the vortex viscosity, pinning strength, and flux creep effects. At the same time, the trapping of vortices in superconducting microwave re