ﻻ يوجد ملخص باللغة العربية
Given four congruent balls $A, B, C, D$ in $R^{d}$ that have disjoint interior and admit a line that intersects them in the order $ABCD$, we show that the distance between the centers of consecutive balls is smaller than the distance between the centers of $A$ and $D$. This allows us to give a new short proof that $n$ interior-disjoint congruent balls admit at most three geometric permutations, two if $nge 7$. We also make a conjecture that would imply that $ngeq 4$ such balls admit at most two geometric permutations, and show that if the conjecture is false, then there is a counter-example of a highly degenerate nature.
The necessary and sufficient conditions under which a given family $mathcal{F}$ of subsets of finite set $X$ coincides with the family $mathbf{B}_X$ of all balls generated by some ultrametric $d$ on $X$ are found. It is shown that the representing tr
We study the combinatorial properties of vexillary signed permutations, which are signed analogues of the vexillary permutations first considered by Lascoux and Schutzenberger. We give several equivalent characterizations of vexillary signed permutat
Thurston norms are invariants of 3-manifolds defined on their second homology vector spaces, and understanding the shape of their dual unit ball is a (widely) open problem. W. Thurston showed that every symmetric polygon in Z^2, whose vertices satisf
We study the volume of the intersection of two unit balls from one of the classical matrix ensembles GOE, GUE and GSE, as the dimension tends to infinity. This can be regarded as a matrix analogue of a result of Schechtman and Schmuckenschlager for c
In this work we study the issue of geodesic extendibility on complete and locally compact metric length spaces. We focus on the geometric structure of the space $(Sigma (X),d_H)$ of compact balls endowed with the Hausdorff distance and give an explic