ﻻ يوجد ملخص باللغة العربية
We provide formulas to compute the coefficients entering the affine scaling needed to get a non-degenerate function for the asymptotic distribution of the maxima of some kind of observable computed along the orbit of a randomly perturbed dynamical system. This will give information on the local geometrical properties of the stationary measure. We will consider systems perturbed with additive noise and with observational noise. Moreover we will apply our techniques to chaotic systems and to contractive systems, showing that both share the same qualitative behavior when perturbed.
In this paper we characterize the mixing properties in the advection of passive tracers by exploiting the extreme value theory for dynamical systems. With respect to classical techniques directly related to the Poincare recurrences analysis, our meth
This study uses the link between extreme value laws and dynamical systems theory to show that important dynamical quantities as the correlation dimension, the entropy and the Lyapunov exponents can be obtained by fitting observables computed along a
The notion of Carry Value Transformation (CVT) is a model of Discrete Deterministic Dynamical System. In this paper, we have studied some interesting properties of CVT and proved that (1) the addition of any two non-negative integers is same as the s
We propose a new method for modeling the distribution function of high dimensional extreme value distributions. The Pickands dependence function models the relationship between the covariates in the tails, and we learn this function using a neural ne
We extend the scope of the dynamical theory of extreme values to cover phenomena that do not happen instantaneously, but evolve over a finite, albeit unknown at the onset, time interval. We consider complex dynamical systems, composed of many individ