ﻻ يوجد ملخص باللغة العربية
The notion of Carry Value Transformation (CVT) is a model of Discrete Deterministic Dynamical System. In this paper, we have studied some interesting properties of CVT and proved that (1) the addition of any two non-negative integers is same as the sum of their CVT and XOR values. (2) While performing the repeated addition of CVT and XOR of two non-negative integers a and b (where a >= b), the number of iterations required to get either CVT=0 or XOR=0 is at most the length of a when both are expressed as binary strings. A similar process of addition of Modified Carry Value Transformation (MCVT) and XOR requires a maximum of two iterations for MCVT to be zero. (3) An equivalence relation is defined in the set (Z x Z) which divides the CV table into disjoint equivalence classes.
CVT and XOR are two binary operations together used to calculate the sum of two non-negative integers on using a recursive mechanism. In this present study the convergence behaviors of this recursive mechanism has been captured through a tree like st
In this paper the theory of Carry Value Transformation (CVT) is designed and developed on a pair of n-bit strings and is used to produce many interesting patterns. One of them is found to be a self-similar fractal whose dimension is same as the dimen
Here the Integral Value Transformations (IVTs) are considered to be Discrete Dynamical System map in the spacemathbb{N}_(0). In this paper, the dynamics of IVTs is deciphered through the light of Topological Dynamics.
We provide formulas to compute the coefficients entering the affine scaling needed to get a non-degenerate function for the asymptotic distribution of the maxima of some kind of observable computed along the orbit of a randomly perturbed dynamical sy
In this paper, the notion of Integral Value Transformations (IVTs), a class of Discrete Dynamical Maps has been introduced. Then notion of Affine Discrete Dynamical System (ADDS) in the light of IVTs is defined and some rudimentary mathematical prope