ترغب بنشر مسار تعليمي؟ اضغط هنا

A Computational Model of Crowds for Collective Intelligence

66   0   0.0 ( 0 )
 نشر من قبل Walter Lasecki
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present a high-level computational model of IT-mediated crowds for collective intelligence. We introduce the Crowd Capital perspective as an organizational-level model of collective intelligence generation from IT-mediated crowds, and specify a computational system including agents, forms of IT, and organizational knowledge.



قيم البحث

اقرأ أيضاً

Collective intelligence is the ability of a group to perform more effectively than any individual alone. Diversity among group members is a key condition for the emergence of collective intelligence, but maintaining diversity is challenging in the fa ce of social pressure to imitate ones peers. We investigate the role incentives play in maintaining useful diversity through an evolutionary game-theoretic model of collective prediction. We show that market-based incentive systems produce herding effects, reduce information available to the group and suppress collective intelligence. In response, we propose a new incentive scheme that rewards accurate minority predictions, and show that this produces optimal diversity and collective predictive accuracy. We conclude that real-world systems should reward those who have demonstrated accuracy when majority opinion has been in error.
Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify th e algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems.
This paper is focused on the computational analysis of collective discourse, a collective behavior seen in non-expert content contributions in online social media. We collect and analyze a wide range of real-world collective discourse datasets from m ovie user reviews to microblogs and news headlines to scientific citations. We show that all these datasets exhibit diversity of perspective, a property seen in other collective systems and a criterion in wise crowds. Our experiments also confirm that the network of different perspective co-occurrences exhibits the small-world property with high clustering of different perspectives. Finally, we show that non-expert contributions in collective discourse can be used to answer simple questions that are otherwise hard to answer.
The rise of Artificial Intelligence (AI) will bring with it an ever-increasing willingness to cede decision-making to machines. But rather than just giving machines the power to make decisions that affect us, we need ways to work cooperatively with A I systems. There is a vital need for research in AI and Cooperation that seeks to understand the ways in which systems of AIs and systems of AIs with people can engender cooperative behavior. Trust in AI is also key: trust that is intrinsic and trust that can only be earned over time. Here we use the term AI in its broadest sense, as employed by the recent 20-Year Community Roadmap for AI Research (Gil and Selman, 2019), including but certainly not limited to, recent advances in deep learning. With success, cooperation between humans and AIs can build society just as human-human cooperation has. Whether coming from an intrinsic willingness to be helpful, or driven through self-interest, human societies have grown strong and the human species has found success through cooperation. We cooperate in the small -- as family units, with neighbors, with co-workers, with strangers -- and in the large as a global community that seeks cooperative outcomes around questions of commerce, climate change, and disarmament. Cooperation has evolved in nature also, in cells and among animals. While many cases involving cooperation between humans and AIs will be asymmetric, with the human ultimately in control, AI systems are growing so complex that, even today, it is impossible for the human to fully comprehend their reasoning, recommendations, and actions when functioning simply as passive observers.
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improv ements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا