ترغب بنشر مسار تعليمي؟ اضغط هنا

Bits from Biology for Computational Intelligence

267   0   0.0 ( 0 )
 نشر من قبل Viola Priesemann
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems.



قيم البحث

اقرأ أيضاً

Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal state models (CSMs), the minimal hidden Markov models or stochastic automata capable of generating statistically identical time series. We then use these CSMs to objectively quantify both the generalizable structure and the idiosyncratic randomness of the spike train. Specifically, we show that the expected algorithmic information content (the information needed to describe the spike train exactly) can be split into three parts describing (1) the time-invariant structure (complexity) of the minimal spike-generating process, which describes the spike train statistically; (2) the randomness (internal entropy rate) of the minimal spike-generating process; and (3) a residual pure noise term not described by the minimal spike-generating process. We use CSMs to approximate each of these quantities. The CSMs are inferred nonparametrically from the data, making only mild regularity assumptions, via the causal state splitting reconstruction algorithm. The methods presented here complement more traditional spike train analyses by describing not only spiking probability and spike train entropy, but also the complexity of a spike trains structure. We demonstrate our approach using both simulated spike trains and experimental data recorded in rat barrel cortex during vibrissa stimulation.
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improv ements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
Though it goes without saying that linear algebra is fundamental to mathematical biology, polynomial algebra is less visible. In this article, we will give a brief tour of four diverse biological problems where multivariate polynomials play a central role -- a subfield that is sometimes called algebraic biology. Namely, these topics include biochemical reaction networks, Boolean models of gene regulatory networks, algebraic statistics and genomics, and place fields in neuroscience. After that, we will summarize the history of discrete and algebraic structures in mathematical biology, from their early appearances in the late 1960s to the current day. Finally, we will discuss the role of algebraic biology in the modern classroom and curriculum, including resources in the literature and relevant software. Our goal is to make this article widely accessible, reaching the mathematical biologist who knows no algebra, the algebraist who knows no biology, and especially the interested student who is curious about the synergy between these two seemingly unrelated fields.
The concepts and methods of Systems Biology are being extended to neuropharmacology, to test and design drugs against neurological and psychiatric disorders. Computational modeling by integrating compartmental neural modeling technique and detailed k inetic description of pharmacological modulation of transmitter-receptor interaction is offered as a method to test the electrophysiological and behavioral effects of putative drugs. Even more, an inverse method is suggested as a method for controlling a neural system to realize a prescribed temporal pattern. In particular, as an application of the proposed new methodology a computational platform is offered to analyze the generation and pharmacological modulation of theta rhythm related to anxiety is analyzed here in more detail.
In this work we study how to apply topological data analysis to create a method suitable to classify EEGs of patients affected by epilepsy. The topological space constructed from the collection of EEGs signals is analyzed by Persistent Entropy acting as a global topological feature for discriminating between healthy and epileptic signals. The Physionet data-set has been used for testing the classifier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا