ترغب بنشر مسار تعليمي؟ اضغط هنا

Order-Independent Texture Synthesis

157   0   0.0 ( 0 )
 نشر من قبل Li-Yi Wei
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Search-based texture synthesis algorithms are sensitive to the order in which texture samples are generated; different synthesis orders yield different textures. Unfortunately, most polygon rasterizers and ray tracers do not guarantee the order with which surfaces are sampled. To circumvent this problem, textures are synthesized beforehand at some maximum resolution and rendered using texture mapping. We describe a search-based texture synthesis algorithm in which samples can be generated in arbitrary order, yet the resulting texture remains identical. The key to our algorithm is a pyramidal representation in which each texture sample depends only on a fixed number of neighboring samples at each level of the pyramid. The bottom (coarsest) level of the pyramid consists of a noise image, which is small and predetermined. When a sample is requested by the renderer, all samples on which it depends are generated at once. Using this approach, samples can be generated in any order. To make the algorithm efficient, we propose storing texture samples and their dependents in a pyramidal cache. Although the first few samples are expensive to generate, there is substantial reuse, so subsequent samples cost less. Fortunately, most rendering algorithms exhibit good coherence, so cache reuse is high.



قيم البحث

اقرأ أيضاً

Recently, deep generative adversarial networks for image generation have advanced rapidly; yet, only a small amount of research has focused on generative models for irregular structures, particularly meshes. Nonetheless, mesh generation and synthesis remains a fundamental topic in computer graphics. In this work, we propose a novel framework for synthesizing geometric textures. It learns geometric texture statistics from local neighborhoods (i.e., local triangular patches) of a single reference 3D model. It learns deep features on the faces of the input triangulation, which is used to subdivide and generate offsets across multiple scales, without parameterization of the reference or target mesh. Our network displaces mesh vertices in any direction (i.e., in the normal and tangential direction), enabling synthesis of geometric textures, which cannot be expressed by a simple 2D displacement map. Learning and synthesizing on local geometric patches enables a genus-oblivious framework, facilitating texture transfer between shapes of different genus.
50 - Ryan Webster 2018
In this work, we present a non-parametric texture synthesis algorithm capable of producing plausible images without copying large tiles of the exemplar. We focus on a simple synthesis algorithm, where we explore two patch match heuristics; the well k nown Bidirectional Similarity (BS) measure and a heuristic that finds near permutations using the solution of an entropy regularized optimal transport (OT) problem. Innovative synthesis is achieved with a small patch size, where global plausibility relies on the qualities of the match. For OT, less entropic regularization also meant near permutations and more plausible images. We examine the tile maps of the synthesized images, showing that they are indeed novel superpositions of the input and contain few or no verbatim copies. Synthesis results are compared to a statistical method, namely a random convolutional network. We conclude by remarking simple algorithms using only the input image can synthesize textures decently well and call for more modest approaches in future algorithm design.
Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networ ks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layers of the network. We show that across layers the texture representations increasingly capture the statistical properties of natural images while making object information more and more explicit. The model provides a new tool to generate stimuli for neuroscience and might offer insights into the deep representations learned by convolutional neural networks.
We propose a method leveraging the naturally time-related expressivity of our voice to control an animation composed of a set of short events. The user records itself mimicking onomatopoeia sounds such as Tick, Pop, or Chhh which are associated with specific animation events. The recorded soundtrack is automatically analyzed to extract every instant and types of sounds. We finally synthesize an animation where each event type and timing correspond with the soundtrack. In addition to being a natural way to control animation timing, we demonstrate that multiple stories can be efficiently generated by recording different voice sequences. Also, the use of more than one soundtrack allows us to control different characters with overlapping actions.
Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them. In this paper, we design a new framework based on content-aware synthesis to enhance content-aware image retargeting. By detec ting the textural regions in an image, the textural image content can be synthesized rather than simply distorted or cropped. This method enables the manipulation of textural & non-textural regions with different strategy since they have different natures. We propose to retarget the textural regions by content-aware synthesis and non-textural regions by fast multi-operators. To achieve practical retargeting applications for general images, we develop an automatic and fast texture detection method that can detect multiple disjoint textural regions. We adjust the saliency of the image according to the features of the textural regions. To validate the proposed method, comparisons with state-of-the-art image targeting techniques and a user study were conducted. Convincing visual results are shown to demonstrate the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا