ترغب بنشر مسار تعليمي؟ اضغط هنا

Indications of a late-time interaction in the dark sector

397   0   0.0 ( 0 )
 نشر من قبل Najla Said
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a general late-time interaction between cold dark matter and vacuum energy is favoured by current cosmological datasets. We characterize the strength of the coupling by a dimensionless parameter $q_V$ that is free to take different values in four redshift bins from the primordial epoch up to today. This interacting scenario is in agreement with measurements of cosmic microwave background temperature anisotropies from the Planck satellite, supernovae Ia from Union 2.1 and redshift space distortions from a number of surveys, as well as with combinations of these different datasets. We show that a non-zero interaction is very likely at late times. We then focus on the case $q_V ot=0$ in a single low-redshift bin, obtaining a nested one parameter extension of the standard $Lambda$CDM model. We study the Bayesian evidence, with respect to $Lambda$CDM, of this late-time interaction model, finding moderate evidence for an interaction starting at $z=0.9$, dependent upon the prior range chosen for the interaction strength parameter $q_V$. For this case the null interaction ($q_V=0$, i.e.$Lambda$CDM) is excluded at 99% c.l..



قيم البحث

اقرأ أيضاً

A phenomenological attempt at alleviating the so-called coincidence problem is to allow the dark matter and dark energy to interact. By assuming a coupled quintessence scenario characterized by an interaction parameter $epsilon$, we investigate the p recision in the measurements of the expansion rate $H(z)$ required by future experiments in order to detect a possible deviation from the standard $Lambda$CDM model ($epsilon = 0$). We perform our analyses at two levels, namely: through Monte Carlo simulations based on $epsilon$CDM models, in which $H(z)$ samples with different accuracies are generated and through an analytic method that calculates the error propagation of $epsilon$ as a function of the error in $H(z)$. We show that our analytical approach traces simulations accurately and find that to detect an interaction {using $H(z)$ data only, these must reach an accuracy better than 1%.
By combining cosmological probes at low, intermediate and high redshifts, we investigate the observational viability of a class of models with interaction in the dark sector. We perform a Bayesian analysis using the latest data sets of type Ia supern ovae, baryon acoustic oscillations, the angular acoustic scale of the cosmic microwave background, and measurements of the expansion rate. When combined with the current measurement of the local expansion rate obtained by the Hubble Space Telescope, we find that these observations provide evidence in favour of interacting models with respect to the standard cosmology.
It has been intensively discussed if modifications in the dynamics of the Universe at late times is able or not to solve the $H_0$ tension. On the other hand, it has also been argued that the $H_0$ tension is actually a tension on the supernova absol ute magnitude $M_B$. In this work, we robustly constraint $M_B$ using Pantheon Supernovae Ia (SN) sample, Baryon Acoustic Oscillations (BAO), and Big Bang Nucleosynthesis (BBN) data, and assess the $M_B$ tension by comparing three theoretical models, namely the standard $Lambda$CDM, the $w$CDM and a non-gravitational interaction (IDE) between dark energy (DE) and dark matter (DM). We find that the IDE model can solve the $M_B$ tension with a coupling different from zero at 95% CL, confirming the results obtained using a $H_0$ prior.
The Universe is modeled as consisting of pressureless baryonic matter and a bulk viscous fluid which is supposed to represent a unified description of the dark sector. In the homogeneous and isotropic background the textit{total} energy density of th is mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value of the deceleration parameter. Moreover, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis. A problem of simple bulk viscous models, however, is the behavior of the gravitational potential and the reproduction of the CMB power spectrum.
195 - Rong-Gen Cai , Qiping Su 2009
It is possible that there exist some interactions between dark energy (DE) and dark matter (DM), and a suitable interaction can alleviate the coincidence problem. Several phenomenological interacting forms are proposed and are fitted with observation s in the literature. In this paper we investigate the possible interaction in a way independent of specific interacting forms by use of observational data (SNe, BAO, CMB and Hubble parameter). We divide the whole range of redshift into a few bins and set the interacting term $delta(z)$ to be a constant in each redshift bin. We consider four parameterizations of the equation of state $w_{de}$ for DE and find that $delta(z)$ is likely to cross the non-interacting ($delta=0$) and have an oscillation form. It suggests that to study the interaction between DE and DM, more general phenomenological forms of the interacting term should be considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا