ﻻ يوجد ملخص باللغة العربية
A phenomenological attempt at alleviating the so-called coincidence problem is to allow the dark matter and dark energy to interact. By assuming a coupled quintessence scenario characterized by an interaction parameter $epsilon$, we investigate the precision in the measurements of the expansion rate $H(z)$ required by future experiments in order to detect a possible deviation from the standard $Lambda$CDM model ($epsilon = 0$). We perform our analyses at two levels, namely: through Monte Carlo simulations based on $epsilon$CDM models, in which $H(z)$ samples with different accuracies are generated and through an analytic method that calculates the error propagation of $epsilon$ as a function of the error in $H(z)$. We show that our analytical approach traces simulations accurately and find that to detect an interaction {using $H(z)$ data only, these must reach an accuracy better than 1%.
It has been intensively discussed if modifications in the dynamics of the Universe at late times is able or not to solve the $H_0$ tension. On the other hand, it has also been argued that the $H_0$ tension is actually a tension on the supernova absol
We place observational constraints on two models within a class of scenarios featuring an elastic interaction between dark energy and dark matter that only produces momentum exchange up to first order in cosmological perturbations. The first one corr
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling $b$ by the form $b(a)=b_0a+b_e(1-a)$, where at the
We show that a general late-time interaction between cold dark matter and vacuum energy is favoured by current cosmological datasets. We characterize the strength of the coupling by a dimensionless parameter $q_V$ that is free to take different value
By combining cosmological probes at low, intermediate and high redshifts, we investigate the observational viability of a class of models with interaction in the dark sector. We perform a Bayesian analysis using the latest data sets of type Ia supern