ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of BSDelta Es driven by random walks to BSDEs: the case of (in)finite activity jumps with general driver

336   0   0.0 ( 0 )
 نشر من قبل Martijn Pistorius
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a weak approximation scheme for BSDEs driven by a Wiener process and an (in)finite activity Poisson random measure with drivers that are general Lipschitz functionals of the solution of the BSDE. The approximating backward stochastic difference equations (BSDelta Es) are driven by random walks that weakly approximate the given Wiener process and Poisson random measure. We establish the weak convergence to the solution of the BSDE and the numerical stability of the sequence of solutions of the BSDelta Es. By way of illustration we analyse explicitly a scheme with discrete step-size distributions.



قيم البحث

اقرأ أيضاً

In [8] we established existence and uniqueness of solutions of backward stochastic differential equations in L^p under a monotonicity condition on the generator and in a general filtration. There was a mistake in the case 1 textless{} p textless{} 2. Here we give a corrected proof. Moreover the quasi-left continuity condition on the filtration is removed.
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with b iased walks on digraphs. Within this framework, we introduce a space-time generalization of the Poisson process as a strictly increasing walk with discrete Mittag-Leffler jumps subordinated to a (continuous-time) fractional Poisson process. We call this process `{it space-time Mittag-Leffler process}. We derive explicit formulae for the state probabilities which solve a Cauchy problem with a Kolmogorov-Feller (forward) difference-differential equation of general fractional type. We analyze a `well-scaled diffusion limit and obtain a Cauchy problem with a space-time convolution equation involving Mittag-Leffler densities. We deduce in this limit the `state density kernel solving this Cauchy problem. It turns out that the diffusion limit exhibits connections to Prabhakar general fractional calculus. We also analyze in this way a generalization of the space-time fractional Mittag-Leffler process. The approach of construction of good Laplacian generator functions has a large potential in applications of space-time generalizations of the Poisson process and in the field of continuous-time random walks on digraphs.
60 - Elena Bandini 2015
This paper considers a forward BSDE driven by a random measure, when the underlying forward process X is special semimartingale, or even more generally, a special weak Dirichlet process. Given a solution (Y, Z, U), generally Y appears to be of the ty pe u(t, X_t) where u is a deterministic function. In this paper we identify Z and U in terms of u applying stochastic calculus with respect to weak Dirichlet processes.
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterised by these two features. We study how these properties affect random walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first passage time of the process and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems such heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.
We prove an analogue of the classical ballot theorem that holds for any random walk in the range of attraction of the normal distribution. Our result is best possible: we exhibit examples demonstrating that if any of our hypotheses are removed, our conclusions may no longer hold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا