ﻻ يوجد ملخص باللغة العربية
Recent experimental investigations of arrays of magnetic atoms deposited on top of a superconductor have opened a new chapter in the search of topological superconductivity. We generalize the microscopic model derived by Pientka et al. [Phys. Rev. B textbf{88}, 155420 (2013)] to accommodate the effects of finite supercurrent in the host material. Previously it was discovered that helical chains with nonplanar textures are plagued by a gapless phase. We show that by employing supercurrent it is possible to tune the chain from the gapless phase to the topological gapped phase. It is also possible to tune the chain between the trivial and the topological gapped phase, the size of which may be dramatically increased due to supercurrent. For planar textures supercurrent mainly contributes to proliferation of the gapless phase. Our predictions, which can be probed in STM experiments, are encouraging for observation and manipulation of Majorana states.
Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some propert
Chains of magnetic adatoms on superconductors have been discussed as promising systems for realizing Majorana end states. Here, we show that dilute Yu-Shiba-Rusinov (YSR) chains are also a versatile platform for quantum magnetism and correlated elect
Inspired by the recent experimental observation of topological superconductivity in ferromagnetic chains, we consider a dilute 2D lattice of magnetic atoms deposited on top of a superconducting surface with a Rashba spin-orbit coupling. We show that
We study theoretically a chain of precessing classical magnetic impurities in an $s$-wave superconductor. Utilizing a rotating wave description, we derive an effective Hamiltonian that describes the emergent Shiba band. We find that this Hamiltonian
The search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moir