ﻻ يوجد ملخص باللغة العربية
The search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moire patterns can act as a powerful knob to create artificial electronic structures. Here we demonstrate that a moire pattern between a van der Waals superconductor and a monolayer ferromagnet creates a periodic potential modulation that enables the realization of a topological superconducting state that would not be accessible in the absence of the moire. We show that the existence of a magnetic moire pattern gives rise to Yu-Shiba-Rusinov minibands and periodic modulation of the Majorana edge modes that we detect using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Our results put forward moire patterns as a powerful tool to overcome conventional constrains for topological superconductivity in van der Waals heterostructures. In a broader picture, periodic potential modulation provides a general way of controlling topological superconductivity towards the realisation of topological qubits in the future.
Recently, superconductivity was discovered at very low densities in slightly misaligned graphene multilayers. Surprisingly, despite extremely low electronic density (about $10^{-4}$ electrons per unit cell), these systems realize strong-coupling supe
Topological phases of matter that depend for their existence on interactions are fundamentally interesting and potentially useful as platforms for future quantum computers. Despite the multitude of theoretical proposals the only interaction-enabled t
We study theoretically a chain of precessing classical magnetic impurities in an $s$-wave superconductor. Utilizing a rotating wave description, we derive an effective Hamiltonian that describes the emergent Shiba band. We find that this Hamiltonian
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-
Among the different platforms to engineer Majorana fermions in one-dimensional topological superconductors, topological insulator nanowires remain a promising option. Threading an odd number of flux quanta through these wires induces an odd number of