ﻻ يوجد ملخص باللغة العربية
We continue the study of twisting of affine algebraic groups G (i.e., of Hopf 2-cocycles J for the function algebra O(G)), which was started in [EG1,EG2], and initiate the study of the associated one-sided twisted function algebras O(G)_J. We first show that J is supported on a closed subgroup H of G (defined up to conjugation), and that O(G)_J is finitely generated with center O(G/H). We then use it to study the structure of O(G)_J for connected nilpotent G. We show that in this case O(G)_J is a Noetherian domain, which is a simple algebra if and only if J is supported on G, and describe the simple algebras that arise in this way. We also use [EG2] to obtain a classification of Hopf 2-cocycles for connected nilpotent G, hence of fiber functors Rep(G)to Vect. Along the way we provide many examples, and at the end formulate several ring-theoretical questions about the structure of the algebras O(G)_J for arbitrary G.
We use cite{G} to study the algebra structure of twisted cotriangular Hopf algebras ${}_Jmathcal{O}(G)_{J}$, where $J$ is a Hopf $2$-cocycle for a connected nilpotent algebraic group $G$ over $mathbb{C}$. In particular, we show that ${}_Jmathcal{O}(G
We generalize the theory of the second invariant cohomology group $H^2_{rm inv}(G)$ for finite groups $G$, developed in [Da2,Da3,GK], to the case of affine algebraic groups $G$, using the methods of [EG1,EG2,G]. In particular, we show that for connec
We show that except in several cases conjugacy classes of classical Weyl groups $W(B_n)$ and $W(D_n)$ are of type {rm D}. We prove that except in three cases Nichols algebras of irreducible Yetter-Drinfeld ({rm YD} in short )modules over the classical Weyl groups are infinite dimensional.
We construct a model of the affine nil-Hecke algebra as a subalgebra of the Nichols-Woronowicz algebra associated to a Yetter-Drinfeld module over the affine Weyl group. We also discuss the Peterson isomorphism between the homology of the affine Gras
The Donald--Flanigan problem for a finite group H and coefficient ring k asks for a deformation of the group algebra kH to a separable algebra. It is solved here for dihedral groups and for the classical Weyl groups (whose rational group algebras are