ﻻ يوجد ملخص باللغة العربية
We investigate the achievable efficiency of both the time and the space discretisation methods used in Antares for mixed parabolic-hyperbolic problems. We show that the fifth order variant of WENO combined with a second order Runge-Kutta scheme is not only more accurate than standard first and second order schemes, but also more efficient taking the computation time into account. Then, we calculate the error decay rates of WENO with several explicit Runge-Kutta schemes for advective and diffusive problems with smooth and non-smooth initial conditions. With this data, we estimate the computational costs of three-dimensional simulations of stellar surface convection and show that SSP RK(3,2) is the most efficient scheme considered in this comparison.
We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope wi
We investigate the computational performance of various numerical methods for the integration of the equations of motion and the variational equations for some typical classical many-body models of condensed matter physics: the Fermi-Pasta-Ulam-Tsing
WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] and Part II [Comp. Phys. Comm. 228, 229-244 (2018)] which dealt with quantum dynamics
One essential component of operational space weather forecasting is the prediction of solar flares. With a multitude of flare forecasting methods now available online it is still unclear which of these methods performs best, and none are substantiall
We investigate the anisotropy of Alfvenic turbulence in the inertial range of slow solar wind and in both driven and decaying reduced magnetohydrodynamic simulations. A direct comparison is made by measuring the anisotropic second-order structure fun