ﻻ يوجد ملخص باللغة العربية
We present measurements of a topological property, the Chern number ($C_mathrm{1}$), of a closed manifold in the space of two-level system Hamiltonians, where the two-level system is formed from a superconducting qubit. We manipulate the parameters of the Hamiltonian of the superconducting qubit along paths in the manifold and extract $C_mathrm{1}$ from the nonadiabitic response of the qubit. By adjusting the manifold such that a degeneracy in the Hamiltonian passes from inside to outside the manifold, we observe a topological transition $C_mathrm{1} = 1 rightarrow 0$. Our measurement of $C_mathrm{1}$ is quantized to within 2 percent on either side of the transition.
Heisenbergs uncertainty principle results in one of the strangest quantum behaviors: an oscillator can never truly be at rest. Even in its lowest energy state, at a temperature of absolute zero, its position and momentum are still subject to quantum
A primary motivation for studying topological matter regards the protection of topological order from its environment. In this work, we study a topological emitter array coupled to an electromagnetic environment. The photon-emitter coupling produces
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the
By example of the nonlinear Kerr-mode driven by a laser, we show that hysteresis phenomena in systems featuring a driven-dissipative phase transition (DPT) can be accurately described in terms of just two collective, dissipative Liouvillian eigenmode
We study the (2+1)-dimensional Dirac oscillator in the presence of an external uniform magnetic field ($B$). We show how the change of the strength of $B$ leads to the existence of a quantum phase transition in the chirality of the system. A critical