ترغب بنشر مسار تعليمي؟ اضغط هنا

BINGO - A novel method to detect BAOs using a total-power radio telescope

141   0   0.0 ( 0 )
 نشر من قبل Clive Dickinson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Clive Dickinson




اسأل ChatGPT حول البحث

BINGO is a novel single-dish total-power telescope that will map the redshifted HI sky in a ~15 degree strip, at frequencies of 960-1260 MHz (z=0.12-0.48). BINGO will have the sensitivity to accurately measure the HI power spectrum and to detect Baryon Acoustic Oscillations (BAOs) for the first time at radio wavelengths. This will provide complementary cosmological information to existing surveys and will measure the acoustic scale to ~2 % precision. We provide an update on BINGO including an improved two-mirror optical configuration, final site selection and foreground removal simulations.



قيم البحث

اقرأ أيضاً

Aims. Radio observing efficiency can be improved by calibrating and reducing the observations in total power mode rather than in frequency, beam, or position-switching modes. Methods. We selected a sample of spectra obtained from the Institut de Radi o-Astronomie Millimetrique (IRAM) 30-m telescope and the Green Bank Telescope (GBT) to test the feasibility of the method. Given that modern front-end amplifiers for the GBT and direct Local Oscillator injection for the 30 m telescope provide smooth pass bands that are a few tens of megahertz in width, the spectra from standard observations can be cleaned (baseline removal) separately and then co-added directly when the lines are narrow enough (a few km/s), instead of performing the traditional ON minus OFF data reduction. This technique works for frequency-switched observations as well as for position- and beam-switched observations when the ON and OFF data are saved separately. Results. The method works best when the lines are narrow enough and not too numerous so that a secure baseline removal can be achieved. A signal-to-noise ratio improvement of a factor of sqrt(2) is found in most cases, consistent with theoretical expectations. Conclusions. By keeping the traditional observing mode, the fallback solution of the standard reduction technique is still available in cases of suboptimal baseline behavior, sky instability, or wide lines, and to confirm the line intensities. These techniques of total-power-mode reduction can be applied to any radio telescope with stable baselines as long as they record and deliver the ONs and OFFs separately, as is the case for the GBT.
We describe a novel method to measure the absolute orientation of the polarization plane of the CMB with arcsecond accuracy, enabling unprecedented measurements for cosmology and fundamental physics. Existing and planned CMB polarization instruments looking for primordial B-mode signals need an independent, experimental method for systematics control on the absolute polarization orientation. The lack of such a method limits the accuracy of the detection of inflationary gravitational waves, the constraining power on the neutrino sector through measurements of gravitational lensing of the CMB, the possibility of detecting Cosmic Birefringence, and the ability to measure primordial magnetic fields. Sky signals used for calibration and direct measurements of the detector orientation cannot provide an accuracy better than 1 deg. Self-calibration methods provide better accuracy, but may be affected by foreground signals and rely heavily on model assumptions. The POLarization Orientation CALibrator for Cosmology, POLOCALC, will dramatically improve instrumental accuracy by means of an artificial calibration source flying on balloons and aerial drones. A balloon-borne calibrator will provide far-field source for larger telescopes, while a drone will be used for tests and smaller polarimeters. POLOCALC will also allow a unique method to measure the telescopes polarized beam. It will use microwave emitters between 40 and 150 GHz coupled to precise polarizing filters. The orientation of the source polarization plane will be registered to sky coordinates by star cameras and gyroscopes with arcsecond accuracy. This project can become a rung in the calibration ladder for the field: any existing or future CMB polarization experiment observing our polarization calibrator will enable measurements of the polarization angle for each detector with respect to absolute sky coordinates.
262 - Yong-Ping Li , Yang Liu , Si-Yu Li 2017
The Cosmic Microwave Background (CMB) Polarization plays an important role in current cosmological studies. CMB B-mode polarization is the most effective probe to primordial gravitational waves (PGWs) and a test of the inflation as well as other theo ries of the early universe such as bouncing and cyclic universe. So far, major ground-based CMB polarization experiments are located in the southern hemisphere.Recently, China has launched the Ali CMB Polarization Telescope (AliCPT) in Tibetan Plateau to measure CMB B mode polarization and detect the PGWs in northern hemisphere. AliCPT include two stages, the first one is to build a telescope at the 5250m site (AliCPT-1) and the second one is to have a more sensitive telescope at a higher altitude of about 6000m (AliCPT-2). In this paper, we report the atmospherical conditions, sky coverage and the current infrastructure associated with AliCPT. We analyzed the reanalysis data from MERRA-2 together with radiosonde data from the Ali Meteorological Service and found that the amount of water vapor has a heavy seasonal variation and October to March is the suitable observation time. We also found 95/150 GHz to be feasible for AliCPT-1 and higher frequencies to be possible for AliCPT-2. Then we analyzed the observable sky and the target fields, and showed that Ali provides us a unique opportunity to observe CMB with less foreground contamination in the northern hemisphere and is complementary to the existed southern CMB experiments. Together with the developed infrastructure, we point out that Ali opens a new window for CMB observation and will be one of the major sites in the world along with Antarctic and Atacama.
[Abridged] The Sardinia Radio Telescope (SRT) is the new 64-m dish operated by INAF (Italy). Its active surface will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested. The SRT was officially opened in October 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the SRTs scientific capabilities. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope sub-systems for further optimization. As a result, the overall telescope performance has been significantly improved. As part of the scientific commissioning activities, different observing modes were tested and validated, and first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools, to support future observers on-site. The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in EVN (European VLBI Network) and LEAP (Large European Array for Pulsars) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following years, and was concluded with the first call for shared-risk/early-science observations issued at the end of 2015.
We present a new package for joint deconvolution of ALMA 12m, 7m, and Total Power (TP) data, dubbed ``Total Power Map to Visibilities (TP2VIS). It converts a TP (single-dish) map into visibilities on the CASA platform, which can be input into deconvo lvers (e.g., CLEAN) along with 12m and 7m visibilities. A manual is presented in the Github repository (https://github.com/tp2vis/distribute). Combining data from the different ALMA arrays is a driver for a number of science topics, namely those that probe size scales of extended and compact structures simultaneously. We test TP2VIS using model images, one with a single Gaussian and another that mimics the internal structures of giant molecular clouds. The result shows that the better uv coverage with TP2VIS visibilities helps the deconvolution process and reproduces the model image within errors of only 5% over two orders of magnitude in flux.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا