ترغب بنشر مسار تعليمي؟ اضغط هنا

POLOCALC: a Novel Method to Measure the Absolute Polarization Orientation of the Cosmic Microwave Background

101   0   0.0 ( 0 )
 نشر من قبل Federico Nati
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a novel method to measure the absolute orientation of the polarization plane of the CMB with arcsecond accuracy, enabling unprecedented measurements for cosmology and fundamental physics. Existing and planned CMB polarization instruments looking for primordial B-mode signals need an independent, experimental method for systematics control on the absolute polarization orientation. The lack of such a method limits the accuracy of the detection of inflationary gravitational waves, the constraining power on the neutrino sector through measurements of gravitational lensing of the CMB, the possibility of detecting Cosmic Birefringence, and the ability to measure primordial magnetic fields. Sky signals used for calibration and direct measurements of the detector orientation cannot provide an accuracy better than 1 deg. Self-calibration methods provide better accuracy, but may be affected by foreground signals and rely heavily on model assumptions. The POLarization Orientation CALibrator for Cosmology, POLOCALC, will dramatically improve instrumental accuracy by means of an artificial calibration source flying on balloons and aerial drones. A balloon-borne calibrator will provide far-field source for larger telescopes, while a drone will be used for tests and smaller polarimeters. POLOCALC will also allow a unique method to measure the telescopes polarized beam. It will use microwave emitters between 40 and 150 GHz coupled to precise polarizing filters. The orientation of the source polarization plane will be registered to sky coordinates by star cameras and gyroscopes with arcsecond accuracy. This project can become a rung in the calibration ladder for the field: any existing or future CMB polarization experiment observing our polarization calibrator will enable measurements of the polarization angle for each detector with respect to absolute sky coordinates.



قيم البحث

اقرأ أيضاً

3D printing presents an attractive alternative to visual representation of physical datasets such as astronomical images that can be used for research, outreach or teaching purposes, and is especially relevant to people with a visual disability. We h ere report the use of 3D printing technology to produce a representation of the all-sky Cosmic Microwave Background (CMB) intensity anisotropy maps produced by the Planck mission. The success of this work in representing key features of the CMB is discussed as is the potential of this approach for representing other astrophysical data sets. 3D printing such datasets represents a highly complementary approach to the usual 2D projections used in teaching and outreach work, and can also form the basis of undergraduate projects. The CAD files used to produce the models discussed in this paper are made available.
We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of the SPT-3G receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through SPT-3G data alone or in combination with BICEP-2/KECK, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the SPT-3G survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (DES), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.
Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. Filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signa ls on the resulting maps. In this work we explicitly construct a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigate the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then study the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may have on the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focus on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR.
The Cosmic Microwave Background (CMB) is a relict of the early universe. Its perfect 2.725K blackbody spectrum demonstrates that the universe underwent a hot, ionized early phase; its anisotropy (about 80 mu K rms) provides strong evidence for the pr esence of photon-matter oscillations in the primeval plasma, shaping the initial phase of the formation of structures; its polarization state (about 3 mu K rms), and in particular its rotational component (less than 0.1 mu K rms) might allow to study the inflation process in the very early universe, and the physics of extremely high energies, impossible to reach with accelerators. The CMB is observed by means of microwave and mm-wave telescopes, and its measurements drove the development of ultra-sensitive bolometric detectors, sophisticated modulators, and advanced cryogenic and space technologies. Here we focus on the new frontiers of CMB research: the precision measurements of its linear polarization state, at large and intermediate angular scales, and the measurement of the inverse-Compton effect of CMB photons crossing clusters of Galaxies. In this framework, we will describe the formidable experimental challenges faced by ground-based, near-space and space experiments, using large arrays of detectors. We will show that sensitivity and mapping speed improvement obtained with these arrays must be accompanied by a corresponding reduction of systematic effects (especially for CMB polarimeters), and by improved knowledge of foreground emission, to fully exploit the huge scientific potential of these missions.
Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high energy scales. We develop a new framework for cosmic string inference, constructing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension $Gmu$ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations we demonstrate the application of our framework and evaluate its performance. The method is sensitive to $Gmu sim 5 times 10^{-7}$ for Nambu-Goto string simulations that include an integrated Sachs-Wolfe (ISW) contribution only and do not include any recombination effects, before any parameters of the analysis are optimised. The sensitivity of the method compares favourably with other techniques applied to the same simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا