ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex lattice structure in BaFe2(As0.67P0.33)2 by the small-angle neutron scattering technique

153   0   0.0 ( 0 )
 نشر من قبل Rieko Ishii
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed a magnetic vortex lattice (VL) in BaFe2(As_{0.67}P_{0.33})2 (BFAP) single crystals by small-angle neutron scattering (SANS). With the field along the c-axis, a nearly isotropic hexagonal VL was formed in the field range from 1 to 16 T, which is a record for this technique in the pnictides, and no symmetry changes in the VL were observed. The temperature-dependence of the VL signal was measured and confirms the presence of (non d-wave) nodes in the superconducting gap structure for measurements at 5 T and below. The nodal effects were suppressed at high fields. At low fields, a VL reorientation transition was observed between 1 T and 3 T, with the VL orientation changing by 45{deg}. Below 1 T, the VL structure was strongly affected by pinning and the diffraction pattern had a fourfold symmetry. We suggest that this (and possibly also the VL reorientation) is due to pinning to defects aligned with the crystal structure, rather than being intrinsic.



قيم البحث

اقرأ أيضاً

We have evidenced by small angle neutron scattering at low temperature the coexistence of ferromagnetism (F) and antiferromagnetism (AF) in Pr0.67Ca0.33MnO3. The results are compared to those obtained in Pr0.80Ca0.20MnO3 and Pr0.63Ca0.37MnO3, which a re F and AF respectively. Quantitative analysis shows that the small angle scattering is not due to a mesoscopic mixing but to a nanoscopic electronic and magnetic red cabbage structure, in which the ferromagnetic phase exists in form of thin layers in the AF matrix (stripes or 2D sheets).
We present studies of the magnetic field distribution around the vortices in LuNi2B2C. Small-angle neutron scattering measurements of the vortex lattice (VL) in this material were extended to unprecedentedly large values of the scattering vector q, o btained both by using high magnetic fields to decrease the VL spacing and by using higher order reflections. A square VL, oriented with the nearest neighbor direction along the crystalline [110] direction, was observed up to the highest measured field. The first-order VL form factor, |F(q10)|, was found to decrease exponentially with increasing magnetic field. Measurements of the higher order form factors, |F(qhk)|, reveal a significant in-plane anisotropy and also allow for a real-space reconstruction of the VL field distribution.
Triblock terpolymers exhibit a rich self-organization behavior including the formation of fascinating cylindrical core-shell structures with a phase separated corona. After crystallization-induced self-assembly of polystryrene-(block)-polyethylene-(b lock)-poly(methyl methacrylate) triblock terpolymers (abbreviated as SEMs = Styrene-Ethylene-Methacrylates) from solution, worm-like core-shell micelles with a patchy corona of polystryrene and poly(methyl methacrylate) were observed by transmission electron microscopy. However, the solution structure is still a matter of debate. Here, we present a method to distinguish in-situ between a Janus-type (two faced) and a patchy (multiple compartments) configuration of the corona. To discriminate between both models the scattering intensity must be determined mainly by one corona compartment. Contrast variation in small-angle neutron scattering enables us to focus on one compartment of the SEMs. The results validate the existence of the patchy structure also in solution.
The influence of Twin Boundaries (TB) on the Flux Line Lattice(FLL) structure was investigated by Small Angle Neutron Scattering (SANS). YBaCuO single crystals possessing different TB densities were studied. The SANS experiments show that the TB stro ngly modify the structure of the FLL. The flux lines meander as soon as the magnetic field makes an angle with the TB direction. According to the value of this angle but also to the ratio of the flux lines density over the TB density, one observes that the FLL exhibits two different unit cells in the plane perpendicular to the magnetic field. One is the classical hexagonal and anisotropic cell while the other is affected by an additional deformation induced by the TB. We discuss a possible relation between this deformation and the increase of the critical current usually observed in heavily twinned samples.
96 - A. Pautrat , J. Scola , Ch. Simon 2004
Flux Lines Lattice (FLL) states have been studied using transport measurements and Small Angle Neutron Scattering in low T$_c$ materials. In Pb-In, the bulk dislocations in the FLL do not influence the transport properties. In Fe doped NbSe$_{2}$, tr ansport properties can differ after a Field Cooling (FC) or a Zero Field Cooling (ZFC) procedure, as previously reported. The ZFC FLL is found ordered with narrow Bragg Peaks and is linked to a linear V(I) curve and to a superficial critical current. The FC FLL pattern exhibits two Bragg peaks and the corresponding V(I) curve shows a S-shape. This can be explained by the coexistence of two ordered FLL slightly tilted from the applied field direction by different superficial currents. These currents are wiped out when the transport current is increased.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا