ﻻ يوجد ملخص باللغة العربية
We consider cosmological inflationary models in which vector fields play some role in the generation of the primordial curvature perturbation $zeta$. Such models are interesting because the involved vector fields naturally seed statistical anisotropy in the primordial fluctuations which could eventually leave a measurable imprint on the cosmic microwave background fluctuations. In this article, we estimate the scale and shape dependent effects on the non-Gaussianity (NG) parameters due to the scale dependent statistical anisotropy in the distribution of the fluctuations. For concreteness, we use a power spectrum (PS) of the fluctuations of the quadrupolar form: $P_zeta(vec{k})equiv P_zeta(k)[1+g_zeta(k)(hat{n} cdot hat{k})^2 ]$, where $g_{zeta}(k)$ is the only quantity which parametrizes the level of statistical anisotropy and $hat{n}$ is a unitary vector which points towards the preferred direction. Then, we evaluate the contribution of the running of $g_{zeta}(k)$ on the NG parameters by means of the $delta N$ formalism. We focus specifically on the details for the $f_{rm NL}$ NG parameter, associated with the bispectrum $B_zeta$, but the structure of higher order NG parameters is straightforward to generalize. Although the level of statistical anisotropy in the PS is severely constrained by recent observations, the importance of statistical anisotropy signals in higher order correlators remains to be determined, this being the main task that we address here. The precise measurement of the shape and scale dependence (or running) of statistical parameters such as the NG parameters and the statistical anisotropy level could provide relevant elements for model building and for the determination of the presence (or nonpresence) of inflationary vector fields and their role in the inflationary mechanism.
We demonstrate equivalence of the in-in formalism and Greens function method for calculating the bispectrum of primordial gravitational waves generated by vacuum fluctuations of the metric. The tree-level bispectrum from the field equation, $B_h$, ag
We study the scalar-tensor-tensor non-Gaussian signal in an inflationary model comprising also an axion coupled with SU(2) gauge fields. In this set-up, metric fluctuations are sourced by the gauge fields already at the linear level providing an enha
We consider a model of inflation consisting a triplet of $U(1)$ vector fields with the parity violating interaction which is non-minimally coupled to inflaton. The vector field sector enjoys global $O(3)$ symmetry which admits isotropic configuration
Scalar metric fluctuations generically source a spectrum of gravitational waves at second order in perturbation theory, poising gravitational wave experiments as potentially powerful probes of the small-scale curvature power spectrum. We perform a de
The Stochastic Gravitational Wave Background (SGWB) is expected to be a key observable for Gravitational Wave (GW) interferometry. Its detection will open a new window on early universe cosmology and on the astrophysics of compact objects. Using a Bo