ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Gaussianity from Axion-Gauge Fields Interactions during Inflation

91   0   0.0 ( 0 )
 نشر من قبل Matteo Fasiello
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the scalar-tensor-tensor non-Gaussian signal in an inflationary model comprising also an axion coupled with SU(2) gauge fields. In this set-up, metric fluctuations are sourced by the gauge fields already at the linear level providing an enhanced chiral gravitational waves spectrum. The same mechanism is at work in generating an amplitude for the three-point function that is parametrically larger than in standard single-field inflation.



قيم البحث

اقرأ أيضاً

We study scalar-tensor-tensor cross correlation $langle zeta hh rangle$ generated by the dynamics of interacting axion and SU(2) gauge fields during inflation. We quantize the quadratic action and solve the linear equations by taking into account mix ing terms in a non-perturbative manner. Combining that with the in-in formalism, we compute contributions from cubic interactions to the bispectrum $B_{zeta hh}$. We find that the bispectrum is peaked at the folded configuration, which is a unique feature encoded by the scalar mixing and localized production of tensor modes. With our parameter choice, the amplitude of the bispectrum is $k^6 B_{zeta hh} sim 10^{-16}$. The unique shape dependence, together with the parity-violating nature, is thus a distinguishing feature to search for in the CMB observables.
303 - David Wands (ICG , Portsmouth , 2010
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non -linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non- attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the $mathcal{O}(1)$ local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
We show that an inflation model in which a spectator axion field is coupled to an SU(2) gauge field produces a large three-point function (bispectrum) of primordial gravitational waves, $B_{h}$, on the scales relevant to the cosmic microwave backgrou nd experiments. The amplitude of the bispectrum at the equilateral configuration is characterized by $B_{h}/P_h^2=mathcal{O}(10)times Omega_A^{-1}$, where $Omega_A$ is a fraction of the energy density in the gauge field and $P_h$ is the power spectrum of gravitational waves produced by the gauge field.
We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model a t tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for $3lesssim m_Qlesssim 4$, where $m_Q$ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio $B_h/P^2_h$, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large $m_Q$ regions of the parameter space, whereas the power spectrum constrains small $m_Q$ regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا