ﻻ يوجد ملخص باللغة العربية
To approximate a simple root of an equation we construct families of iterative maps of higher order of convergence. These maps are based on model functions which can be written as an inner product. The main family of maps discussed is defined recursively and is called {it Newton-barycentric}. We illustrate the application of Newton-barycentric maps in two worked examples, one dealing with a typical least squares problem and the other showing how to locate simultaneously a great number of extrema of the Ackleys function.
A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for plain expres
In this contribution we extend the Taylor expansion method proposed previously by one of us and establish equivalent partial differential equations of DDH lattice Boltzmann scheme at an arbitrary order of accuracy. We derive formally the associated d
We consider the problem of decomposing higher-order moment tensors, i.e., the sum of symmetric outer products of data vectors. Such a decomposition can be used to estimate the means in a Gaussian mixture model and for other applications in machine le
We consider the discretization of a stationary Stokes interface problem in a velocity-pressure formulation. The interface is described implicitly as the zero level of a scalar function as it is common in level set based methods. Hence, the interface
In this paper, we first introduce the reader to the Basic Scheme of Moulinec and Suquet in the setting of quasi-static linear elasticity, which takes advantage of the fast Fourier transform on homogenized microstructures to accelerate otherwise time-