ﻻ يوجد ملخص باللغة العربية
The Galaxy Evolution Explorer (GALEX) detected ultraviolet emission in about 50% of multi-spin early-type galaxies (ETGs), suggesting the occurrence of a recent rejuvenation episode connected to the formation of these kinematical features. With the aim at investigating the complex evolutionary scenario leading to the formation of counter rotating ETGs (CR-ETGs) we use our Smooth Particle Hydrodynamic (SPH) code with chemo-photometric implementation. We discuss here the UV evolutionary path of two CR-ETGs, NGC 3593 and NGC 5173, concurrently best fitting their global observed properties, i.e., morphology, dynamics, as well as their total B-band absolute magnitude and spectral energy distribution (SED) extended over three orders of magnitude in wavelength. These simulations correspond to our predictions about the target evolution which we follow in the color-magnitude diagram (CMD), near-UV (NUV) versus r-band absolute magnitude, as a powerful diagnostic tool to emphasize rejuvenation episodes.
We are investigating the co-evolution of galaxies within groups combining multi-wavelength photometric and 2D kinematical observations. Here we focus on S0s showing star formation in ring/arm-like structures. We use smooth particle hydrodynamical sim
We are exploring galaxy evolution in low density environments exploiting smooth particle hydrodynamic simulations including chemo-photometric implementation. From a large grid of simulations of galaxy encounters and mergers starting from triaxial hal
We characterize the photometric and kinematic properties of simulated early-type galaxy (ETG) stellar halos, and compare them to observations. We select a sample of ~1200 ETGs in the TNG100 and TNG50 simulations, spanning a stellar mass range of $10^
Understanding the ionizing spectrum of low-metallicity galaxies is of great importance for modeling and interpreting emission line observations of early/distant galaxies. Although a wide suite of stellar evolution, atmosphere, population synthesis,
We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equation