ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling between octahedral rotations and local polar displacements in WO3/ReO3 superlattices

159   0   0.0 ( 0 )
 نشر من قبل Joseph Schick
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joseph T. Schick




اسأل ChatGPT حول البحث

We model short-period superlattices of WO$_3$ and ReO$_3$ with first-principles calculations. In fully-relaxed superlattices, we observe that octahedral tilts about an axis in the planes of the superlattices do not propagate from one material, despite the presence of the corner-shared oxygen atoms. However, we find that octahedral rotation is enhanced within WO$_3$ layers in cases in which strain couples with native antiferroelectric displacements of tungsten within their octahedral cages. Resulting structures remain antiferroelectric with low net global polarization. Thermodynamic analysis reveals that superlattices with sufficiently thick ReO$_3$ layers, the absolute number being three or more layers and the Re fraction $geq 50%$, tend to be more stable than the separated material phases and also show enhanced octahedral rotations in the WO$_3$ layers.



قيم البحث

اقرأ أيضاً

The structure of ABO3 perovskites is dominated by two types of unstable modes, namely, the oxygen octahedral rotation (AFD) and ferroelectric (FE) mode. It is generally believed that such AFD and FE modes tend to compete and suppress each other. Here we use first-principles methods to show that a dual nature of the AFD-FE coupling, which turns from competitive to cooperative as the AFD mode strengthens, occurs in numerous perovskite oxides. We provide a unified model of such a dual interaction by introducing novel high-order coupling terms, and explain the atomistic origin of the resulting new form of ferroelectricity in terms of universal steric mechanisms. We also predict that such a novel form of ferroelectricity leads to atypical behaviors, such as an enhancement of the electric polarization under hydrostatic pressure.
Oxygen octahedral rotations have been measured in short-period (LaNiO$_3$)$_n$/(SrMnO$_3$)$_m$ superlattices using synchrotron diffraction. The in-plane and out-of-plane bond angles and lengths are found to systematically vary with superlattice compo sition. Rotations are suppressed in structures with $m>n$, producing a nearly cubic form of LaNiO$_3$. Large rotations are present in structures with $m<n$, leading to reduced bond angles in SrMnO$_3$. The metal-oxygen-metal bond lengths decrease as rotations are reduced, in contrast to behavior previously observed in strained, single layer films. This result demonstrates that superlattice structures can be used to stabilize non-equilibrium octahedral behavior in a manner distinct from epitaxial strain, providing a novel means to engineer the electronic and ferroic properties of oxide heterostructures.
389 - Gustau Catalan 2013
We analyze the hypothetical link between octahedral straightening and increased conductivity inside the domain walls of BiFeO3. Our calculations for 109 degree walls predict a lattice parameter expansion of c.a. 1 percent in the direction perpendicul ar to the wall, and an associated straightening of the octahedral rotation angle of 4 degrees, which is comparable to that observed in the high temperature metallic phase of BiFeO3. On the other hand, in the closely related family of rare-earth orthoferrites, straighter octahedra do not correlate with increased bandgap, which suggests that the correlation between octahedral straightening and bandgap reduction in BiFeO3 is perhaps fortuitous and not necessarily the cause of increased conductivity at the walls.
Epitaxial strain is a proven route to enhancing the properties of complex oxides, however, the details of how the atomic structure accommodates strain are poorly understood due to the difficulty of measuring the oxygen positions in thin films. We pre sent a general methodology for determining the atomic structure of strained oxide films via x-ray diffraction, which we demonstrate using LaNiO3 films. The oxygen octahedral rotations and distortions have been quantified by comparing the intensities of half-order Bragg peaks, arising from the two unit cell periodicity of the octahedral rotations, with the calculated structure factor. Combining ab initio density functional calculations with these experimental results, we determine systematically how strain modifies the atomic structure of this functional oxide.
The electronic and magnetic properties of TbMnO3 leading to its ferroelectric (FE) polarization were investigated on the basis of relativistic density functional theory (DFT) calculations. In agreement with experiment, we show that the spin-spiral pl ane of TbMnO3 can be either the bc- or ab-plane, but not the ac-plane. As for the mechanism of FE polarization, our work reveals that the pure electronic model by Katsura, Nagaosa and Balatsky (KNB) is inadequate in predicting the absolute direction of FE polarization. For the ab-plane spin-spiral state of TbMnO3, the direction of FE polarization predicted by the KNB model is opposite to that predicted by DFT calculations. In determining the magnitude and the absolute direction of FE polarization in spin-spiral states, it is found crucial to consider the displacements of the ions from their ecntrosymmetric positions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا