ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic Mean-Field Hadronic Models under Nuclear Matter Constraints

134   0   0.0 ( 0 )
 نشر من قبل Odilon Louren\\c{c}o
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed $263$ parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we analyzed $240$ Skyrme parameterizations. The results pointed to $2$ models consistent with all constraints. By using another set of constraints, namely, SET2a, formed by the updat



قيم البحث

اقرأ أيضاً

In this work, we study the arising of correlations among some isoscalar ($K_o$, $Q_o$, and $I_o$) and isovector ($J$, $L_o$, $K_{sym}^o$, $Q_{sym}^o$, and $I_{sym}^o$) bulk parameters in nonrelativistic and relativistic hadronic mean-field models. Fo r the former, we investigate correlations in Skyrme and Gogny parametrizations, as well as in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations among bulk parameters for the NR limit, discussing the conditions in which they are linear ones. Based on a recent study [B. M. Santos et al., Phys. Rev. C 90, 035203 (2014)], we also show that some correlations presented in the NR limit are reproduced for relativistic models presenting cubic and quartic self-interactions in the scalar field $sigma$, mostly studied in this work in the context of the relativistic framework. We also discuss how the crossing points, observed in the density dependence of some bulk parameters, can be seen as a signature of linear correlations between the specific bulk quantity presenting the crossing, and its immediately next order parameter.
The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.
96 - A. Baran , P. Mierzynski 2003
The halo factor is one of the experimental data which describes a distribution of neutrons in nuclear periphery. In the presented paper we use Skyrme-Hartree (SH) and the Relativistic Mean Field (RMF) models and we calculate the neutron excess factor $Delta_B$ defined in the paper which differs slightly from halo factor $f_{rm exp}$. The results of the calculations are compared to the measured data.
The Physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclear binding energies calculated with and without mean isovector potential for several isobaric chains we conform earlier S kyrme-Hartree-Fock result that the nuclear symmetry energy strength depends on the mean level spacing $epsilon (A)$ and an effective mean isovector potential strength $kappa (A)$. A detaied analysis of isospin dependence of the two components contributing to the nuclear symmetry energy reveals a quadratic dependence due to the mean-isoscalar potential, $simepsilon T^2$, and, completely unexpectedly, the presence of a strong linear component $simkappa T(T+1+epsilon/kappa)$ in the isovector potential. The latter generates a nuclear symmetry energy in RMF theory that is proportional to $E_{sym}sim T(T+1)$ at variance to the non-relativistic calculation. The origin of the linear term in RMF theory needs to be further explored.
181 - A. Lavagno 2013
We investigate an effective relativistic equation of state at finite values of temperature and baryon chemical potential with the inclusion of the full octet of baryons, the Delta-isobars and the lightest pseudoscalar and vector meson degrees of free dom. These last particles have been introduced within a phenomenological approach by taking into account of an effective chemical potential and mass depending on the self-consistent interaction between baryons. In this framework, we study of the hadron yield ratios measured in central heavy ion collisions over a broad energy range and present the beam energy dependence of underlying dynamic quantities like the net baryon density and the energy density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا