ترغب بنشر مسار تعليمي؟ اضغط هنا

Ambient-Pressure X-ray Photoelectron Spectroscopy through Electron Transparent Graphene Membranes

220   0   0.0 ( 0 )
 نشر من قبل Andrei Kolmakov A
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoelectron spectroscopy (PES) and microscopy are highly demanded for exploring morphologically complex solid-gas and solid-liquid interfaces under realistic conditions, but the very small electron mean free path inside the dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using sophisticated and expensive electron energy analyzers coupled with differentially pumped electron lenses. An alternative economical approach proposed in this report uses ultrathin graphene membranes to isolate the ambient sample environment from the PES detection system. We demonstrate that the graphene membrane separating windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow PES of liquid and gaseous water. The reported proof-of-principle experiments also open a principal possibility to probe vacuum-incompatible toxic or reactive samples enclosed inside the hermetic environmental cells.



قيم البحث

اقرأ أيضاً

99 - H. Kersell , P. Chen , H. Martins 2021
We have developed an experimental system to simultaneously observe surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring X-ray photoel ectron spectroscopy (XPS) and grazing incidence X-ray scattering (GIXS) in gas pressures as high as the multi-Torr regime, while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano- to the meso-scale. The grazing incidence geometry provides tunable depth sensitivity while scattered X-rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and in ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O$_2$ atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent X-ray scattering experiments can greatly benefit from the concepts we present here.
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method. While synchrotrons have large communities of XAS users, its use on X-Ray Free Electron Lasers (XFEL) facilities has been rather limited. At a first glance, the relatively n arrow bandwidth and the highly fluctuating spectral structure of XFEL sources seem to prevent high-quality XAS measurements without accumulating over many shots. Here, we demonstrate for the first time the collection of single-shot XAS spectra on an XFEL, with error bars of only a few percent, over tens of eV. We show how this technique can be extended over wider spectral ranges towards Extended X-ray Absorption Fine Structure (EXAFS) measurements, by concatenating a few tens of single-shot measurements. Such results open indisputable perspectives for future femtosecond time resolved XAS studies, especially for transient processes that can be initiated at low repetition rate.
The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic x-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard x-ray range. These two techniques offer powerful, complementary methods of characterizatio n of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, we address the beamline performances through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.
Resonant elastic X-ray scattering has been widely employed for exploring complex electronic ordering phenomena, like charge, spin, and orbital order, in particular in strongly correlated electronic systems. In addition, recent developments of pump-pr obe X-ray scattering allow us to expand the investigation of the temporal dynamics of such orders. Here, we introduce a new time-resolved Resonant Soft X-ray Scattering (tr-RSXS) endstation developed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This endstation has an optical laser (wavelength of 800 nm plus harmonics) as the pump source. Based on the commissioning results, the tr-RSXS at PAL-XFEL can deliver a soft X-ray probe (400-1300 eV) with a time resolution about ~100 fs without jitter correction. As an example, the temporal dynamics of a charge density wave on a high-temperature cuprate superconductor is demonstrated.
In this work, we characterize the performance of a deep convolutional neural network designed to detect and quantify chemical elements in experimental X-ray photoelectron spectroscopy data. Given the lack of a reliable database in literature, in orde r to train the neural network we computed a large ($>$100 k) dataset of synthetic spectra, based on randomly generated materials covered with a layer of adventitious carbon. The trained net performs as good as standard methods on a test set of $approx$ 500 well characterized experimental X-ray photoelectron spectra. Fine details about the net layout, the choice of the loss function and the quality assessment strategies are presented and discussed. Given the synthetic nature of the training set, this approach could be applied to the automatization of any photoelectron spectroscopy system, without the need of experimental reference spectra and with a low computational effort.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا