ﻻ يوجد ملخص باللغة العربية
Let $(X,d)$ be an $n$-dimensional Alexandrov space whose Hausdorff measure $mathcal{H}^n$ satisfies a condition giving the metric measure space $(X,d,mathcal{H}^n)$ a notion of having nonnegative Ricci curvature. We examine the influence of large volume growth on these spaces and generalize some classical arguments from Riemannian geometry showing that when the volume growth is sufficiently large, then $(X,d,mathcal{H}^n)$ has finite topological type.
We show that every finite-dimensional Alexandrov space X with curvature bounded from below embeds canonically into a product of an Alexandrov space with the same curvature bound and a Euclidean space such that each affine function on X comes from an affine function on the Euclidean space.
In this note, we estimate the upper bound of volume of closed positively or nonnegatively curved Alexandrov space $X$ with strictly convex boundary. We also discuss the equality case. In particular, the Boundary Conjecture holds when the volume upper
The equivariant Gromov--Hausdorff convergence of metric spaces is studied. Where all isometry groups under consideration are compact Lie, it is shown that an upper bound on the dimension of the group guarantees that the convergence is by Lie homomorp
We will show that the quantitative maximal volume entropy rigidity holds on Alexandrov spaces. More precisely, given $N, D$, there exists $epsilon(N, D)>0$, such that for $epsilon<epsilon(N, D)$, if $X$ is an $N$-dimensional Alexandrov space with cur
Let $G$ be a finite group with symmetric generating set $S$, and let $c = max_{R > 0} |B(2R)|/|B(R)|$ be the doubling constant of the corresponding Cayley graph, where $B(R)$ denotes an $R$-ball in the word-metric with respect to $S$. We show that th